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II. Introduction
In control system applications, a controlled system’s convergence time is a crucial performance criterion. Achieving

finite-time stability rather than asymptotic stability is a common goal in a variety of applications, such as spacecraft

attitude control, missile guidance, hybrid formation flying and group consensus, as well as in online differentiators and

state observers [1]. Many space operations, such as surveillance, spacecraft rendezvous and docking, and formation

flying, have difficulties with attitude control subsystems. The amount of time it takes for the spacecraft to converge to

the correct orientation is crucial since it might decide whether the mission succeeds. In practice, the attitude control

system demands a specified settling period, or when the system’s states converge to its equilibrium with a minimum

steady state error [2]. However, since the attitude motion of spacecraft is inherently nonlinear, model parameters are

sometimes unknown, and also, due to the presence of external disturbances, designing the attitude controller for a high

control accuracy and a fast response in the prescribed settling time remains a challenging problem [3].

Recent research has focused on the finite and fixed time control to address the problem of pre-determined settling

time. Finite-time stability refers to the stability in the sense of Lyapunov such that its trajectories converge to zero in

finite time. Sliding mode control is a widely used method for finite-time convergence. Fractional power feedback and

homogeneity property are two popular approaches in sliding mode control for finite-time convergence and robustness

against bounded disturbances. It should be noted that a fractional power feedback renders a discontinuous control action

[4]. The finite-time stability of homogeneous systems is examined by [5] and it concludes that a homogeneous system is

finite-time stable if and only if it is asymptotically stable and has a negative degree of homogeneity. The work in [6]

defines finite-time stability and provides a meticulous analysis of the finite-time stability of autonomous systems. The

author in [7] has further investigated the homogeneity properties of higher order sliding modes and proved finite-time

convergence of the same. Further, the work in [8] presents a state-feedback controller that provides global finite-time

stability to a class of nonlinear systems that are dominated by the lower triangular system using a nonsmooth feedback.

The authors in [9] addressed sufficient and necessary conditions for finite-time stability of affine systems having the

uniqueness of solution in forward time without assuming the continuity of settling time function at origin. Controllers

designed in [10] approaches to equilibrium in finite-time using the non-singular terminal sliding mode control. The

authors in [11] propose a non-singular terminal sliding mode control for a second order nonlinear plant such that it

ensures a bound on settling time of state after reaching the sliding surface. Further, the authors in [3] proposes a novel

integral sliding mode surface with the aid of the saturation function and a homogeneous theory, which can converge the

system state to the equilibrium point in finite time.

The notion of fixed-time stability was introduced by [12] which is to control the global settling time which does not

depend on initial conditions and system parameters and proposed two approaches of achieving guaranteed settling-time

using polynomial feedback laws and a modified second order sliding mode control. It should be emphasized that

the fixed-time control approach guarantees the boundedness of settling time but it does not allow the assignment of
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prescribed settling time within physically allowable range due to some restrictions. The author in [13] concludes

that any finite-time convergent homogeneous sliding mode controller can be transformed into a fixed-time convergent

with an upper bound on its convergence time, which is independent from initial conditions. An implicit Lyapunov

function-based approach for fixed and finite-time stabilization and linear matrix inequalities are used to define fixed

and finite-time stability conditions which ultimately facilitates the tuning of controller for a given settling-time was

proposed by [14]. However, [11, 12, 14–16] ensures finite and fixed-time stability but they do not offer any direct and

simple solution to the controller tuning for a given settling time.

Then, a new class of systems called prescribed time stable came into existence by the the work of [17] where the

authors explicitly take the settling time into account in its time-varying feedback control law to achieve prescribed

finite-time regulation with no dependence on initial conditions and system parameters using a scaling function that

grows unbounded towards the terminal time. Further, the paper [18] introduced the notion of arbitrary time stability and

prescribed arbitrary time stability. The control law offered by [18] is based on a non-autonomous differential equation

whose solution approaches to zero in a predefined settling-time. The paper [19] further extends the approach introduced

by [18] and offers its integration with a general sliding mode control. The authors in [20] applies the work of [18] on

the rigid body motion on SO(3). However, the work in [21] pointed out an error in stability analysis of [18] for second

and higher order systems, which then was addressed by [22]. The paper [23] also has pointed out an important technical

error in [18] that the claim of bounded input even if the state grows large was false. According to work in [23], the

input will be unacceptably large at its initial time for large negative values of the system state 𝑥 < 0. This issue of large

input specially at the initial time moment is also highlighted in [24] with simulations. Our work is motivated by the

modification in the non-autonomous differential inequality offered by [18] such that the modified differential inequality

always gives a lesser control input.

Considering the aforementioned discussions, in this paper, a novel non-autonomous differential equation having a

time-varying gain is designed as a control input to ensure that system states settle to zero within a specified settling

period, regardless of initial conditions or system parameters. It should be emphasized that in the classical finite-time

control, the settling time is defined by the initial condition of the system as well as a number of design considerations,

and as a result, it is impossible to arbitrarily prescribe the settling time. The time-varying gain-based prescribed-time

control uses a regular state feedback, rendering a smooth control input. The control design and stability analysis for

high-order systems has been simplified by using the proposed prescribed-time control methodology, which depends only

on a normal Lyapunov differential inequality stability analysis rather than a fractional Lyapunov differential inequality.

The controller parameters can be changed at will to change the rate of convergence, but they have no effect on the upper

bound of the settling time. The boundedness of the control input for a second order system is demonstrated using

the extreme value theorem. Analytical results and explanations are provided for the influence of convergence time on

the maximum needed control torque. The control scheme presented in this research ensures prescribed arbitrary time
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stability and tracking of spacecraft attitude motion employing quaternion attitude description. First, a general prescribed

arbitrary time controller for a chain of arbitrary order integrators is obtained, and then, a controller for a spacecraft

attitude motion without external disturbances is derived. In addition to prescribed arbitrary time control, a sliding

mode control employing the exponential reaching law is used to reject the bounded disturbance. Other types of sliding

surfaces can be employed depending on the requirements, but in the interest of keeping this control system simple, we

utilized a linear sliding surface. Finally, numerical simulation results are shown to demonstrate the effectiveness of the

proposed control strategy.

The following is a breakdown of how the remaining paper is structured: The dynamics and kinematics of spacecraft

motion are described in section 3 and in section 4, preliminary definitions and the main results of prescribed arbitrary

time stability are presented. Section 5 presents a generic control law derivation process up to 2nd order, which is

then generalized for 𝑛𝑡ℎ order systems, after which a control for spacecraft dynamics is derived and its stability is

demonstrated. The sliding mode controller is integrated with the prescribed arbitrary time control law in the concluding

part of section 5. The simulation results are provided in section 6. Finally, section 7 concludes the paper.

III. Spacecraft Attitude Motion
In this section, the rotational motion of a fully actuated spacecraft is considered and its attitude is described in terms

of quaternion. For deriving the motion dynamics, two coordinate frames are considered and also, it is assumed that

the satellite is a rigid body. The reference frames are the Earth-centered inertial frame (𝑋𝑌𝑍) and satellite body-fixed

frame (𝑥𝑦𝑧) that coincides at the 𝑐.𝑔. of the satellite. Let the current attitude of the spacecraft 𝑤.𝑟.𝑡. to inertial frame

is represented by 𝑞 ∈ [𝑞0, 𝑞1, 𝑞2, 𝑞3]𝑇 , where 𝑞𝑣 = [𝑞1, 𝑞2, 𝑞3]𝑇 ∈ R3 is the vector part and 𝑞0 is the scalar part of

quaternion and satisfies 𝑞𝑇𝑞 = 1. The governing equations of the attitude motion are given as follows [25, 26]

¤𝑞 =
1
2
𝑞 ⊗ 𝝎 (1)

𝐽 ¤𝜔 = −𝜔̂𝐽𝜔 + 𝑢 + 𝑑 (𝑡) (2)

where 𝝎 = [0, 𝜔𝑇 ]𝑇 ∈ R4 is the angular velocity quaternion, 𝜔 = [𝜔1, 𝜔2, 𝜔3]𝑇 ∈ R3 denotes the angular velocity of

the spacecraft in the body frame (𝑥𝑦𝑧) w.r.t. inertial frame (𝑋𝑌𝑍), 𝐽 ∈ R3×3 is the moment of inertia tensor, 𝑢 ∈ R3

denotes the control command and 𝑑 (𝑡) ∈ R3 denotes the external disturbance which is assumed to be bounded in this
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paper, 𝜔̂ ∈ R3×3 is the skew-symmetric matrix that facilitates the cross product with 𝜔 ∈ R3 as given by

𝜔̂ =



0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0


(3)

Let 𝑞𝑑 = [𝑞0𝑑 , 𝑞1𝑑 , 𝑞2𝑑 , 𝑞3𝑑 ]𝑇 ∈ R4 be the desired quaternion attitude and 𝑞−1
𝑑

= [𝑞0𝑑 ,−𝑞1𝑑 ,−𝑞2𝑑 ,−𝑞3𝑑 ]𝑇 ∈ R4 is the

conjugate of 𝑞𝑑 , then the quaternion error, denoted by 𝑞𝑒 ∈ R4, can be written as [27]

𝑞𝑒 = 𝑞
−1
𝑑 ⊗ 𝑞 (4)

And, the error kinematics is derived as

¤𝑞𝑒 = 𝑞−1
𝑑 ⊗ ( ¤𝑞 − ¤𝑞𝑑 ⊗ 𝑞𝑒) (5)

Using Eq. (1) for both 𝑞𝑒 and 𝑞𝑑 , Eq. (5) becomes

¤𝑞𝑒 =
1
2
𝑞−1
𝑑 ⊗ ( 1

2
𝑞 ⊗ 𝝎 − 1

2
𝑞𝑑 ⊗ 𝝎𝐷

𝑑 ⊗ 𝑞𝑒)

=
1
2
𝑞𝑒 ⊗ (𝝎 − 𝑞−1

𝑒 ⊗ 𝝎𝐷
𝑑 ⊗ 𝑞𝑒) (6)

Here, 𝜔𝐷
𝑑
∈ R4 is the desired angular velocity quaternion of desired reference frame (𝑥𝐷𝑦𝐷𝑧𝐷) . Let 𝝎𝐵

𝑑
be the desired

angular velocity quaternion of the body-frame (𝑥𝑦𝑧), then the transformation between angular velocities in body-frame

and angular velocity in the desired frame can be made through the following expression

𝝎𝐷
𝑑 = 𝑞𝑒 ⊗ 𝝎𝐵

𝑑 ⊗ 𝑞−1
𝑒

As a result, Eq. (6) becomes

¤𝑞𝑒 =
1
2
𝑞𝑒 ⊗ (𝝎 − 𝝎𝐵

𝑑 ) (7)

By writing Eq. (7) as 𝝎 − 𝝎𝑩
𝒅 = 2𝑞−1

𝑒 ⊗ ¤𝑞𝑒, we get
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¤𝝎 − ¤𝝎𝐵
𝑑 = 2 ¤𝑞−1

𝑒 ⊗ ¤𝑞𝑒 + 2𝑞−1
𝑒 ⊗ ¥𝑞𝑒

= 2(∥ 𝑞𝑒 ∥2, 0) + 2𝑞−1
𝑒 ⊗ ¥𝑞𝑒 (8)

The vector part of Eq. (8) can be written as

¤𝜔 − ¤𝜔𝐵
𝑑 = 2𝐺 ¥𝑞𝑒 (9)

By rearranging Eq. (9), we get

¥𝑞𝑒 =
1
2
𝐺𝑇 ( ¤𝜔 − ¤𝜔𝐵

𝑑 ) (10)

where

𝐺 =



−𝑞1 𝑞0 𝑞3 −𝑞2

−𝑞2 −𝑞3 𝑞0 𝑞1

−𝑞3 𝑞2 −𝑞1 𝑞0

𝑒
It is to be noted that for a tracking problem, ¤𝜔𝐵

𝑑
will be non-zero and it is required to compute correctly in the body-frame

(𝑥𝑦𝑧). Let 𝑅(𝑞𝑒) be a rotation matrix that transforms a vector from body-frame to desired frame, 𝜔𝐵
𝑑
= 𝑅(𝑞𝑒)𝑇𝜔𝐷

𝑑
. or

¤𝜔𝐵
𝑑 = ¤𝑅(𝑞𝑒)𝑇𝜔𝐷

𝑑 + 𝑅(𝑞𝑒)𝑇 ¤𝜔𝐷
𝑑 (11)

In the following Section, the preliminaries definitions are briefly presented for defining some terminology associated

with the control methodology that is discussed in Section (4)

IV. Preliminary definitions and Stability Analysis
Consider the following nonlinear non-autonomous system

¤𝑥 = 𝑔(𝑡, 𝑥; 𝜃), 𝑥(𝑡0) = 𝑥0 (12)

where 𝑥 ∈ R𝑛 is system state, 𝜃 ∈ 𝑅𝑛 is the time-invariant system parameter and 𝑔 : R+ ∪ {0} × R𝑛 −→ R𝑛 is a

non-linear function whose origin lies at 𝑥𝑒 = 0, such that it satisfies 𝑔(𝑡, 0, 𝜃) = 0 and the initial time is represented by

𝑡0 ∈ R+ ∪ {0}. The following definitions are used to obtain the prescribed time control that are presented in the next
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section.

Definition 1:(Globally finite-time stable) The equilibrium point of system (12) is called globally finite-time stable if is

globally asymptotically stable and any solution 𝑥(𝑡, 𝑥0, 𝜃) of (12) converges to equilibrium point in some finite time

moment. Alternatively, 𝑥(𝑡, 𝑥0, 𝜃) = 0, ∀𝑡 ≥ 𝑇 (𝑥0, 𝜃), where 𝑇 (𝑥0, 𝜃) is settling time function which depends on initial

conditions and system parameters [12].

Definition 2:(Fixed time stable) The equilibrium point of system (12) is called fixed time stable if it is globally finite

time stable and 𝑇 (𝑥0, 𝜃) is upper bounded. Alternatively, ∃𝑇𝑚𝑎𝑥 > 0 : 𝑇 (𝑥0, 𝜃) ≤ 𝑇𝑚𝑎𝑥[12].

Definition 3:(Arbitrary time stable) The equilibrium point of the system (12) is said to be Arbitrary time stable if it is

fixed time stable and ∃𝑇 (𝑥0, 𝜃) > 0 for some given 𝑥0 and 𝜃, also if 𝑇 (𝑥0, 𝜃) can be adjusted arbitrarily by changing 𝜃

such that it possible to establish either of the two conditions

i. 𝑇 (𝑥0, 𝜃) ≥ 𝑇 𝑓

ii. 𝑇 (𝑥0, 𝜃) = 𝑇 𝑓 ,where 𝑇 𝑓 is the true fixed time [18].

Definition 4: (Prescribed Arbitrary time stable) The equilibrium point of the system (12) is said to be Prescribed

arbitrary time stable if it is fixed time stable and ∃𝑇 > 0 independent of 𝑥0 and 𝜃 which can be chosen in advance and it

is possible to establish either of the two conditions

i. 𝑇 ≥ 𝑇𝑡 𝑓 (Weak stable)

ii. 𝑇 = 𝑇𝑡 𝑓 (Strong stable) [18]

Based on the above definitions (1-3), the following remarks 1 and 2 are given:

Remark 1: Subject to definition 1, the states reach to the origin in finite-time based on the values of initial conditions

and system parameters chosen. But, in the case of fixed-time control, the convergence time cannot be greater than 𝑇𝑚𝑎𝑥

which is known to the user in advance. Moreover, in fixed-time control, there is no means to set 𝑇𝑚𝑎𝑥 to arbitrary values.

This limitation can be handled in an arbitrary time control, where the user can set the convergence time (𝑇 (𝑥0, 𝜃)) to

any arbitrary value with adjusting 𝜃; but, it is not always permitted to change 𝜃. Hence, these conditions limit the

applicability of above strategies to the systems when desired convergence time is required.

Remark 2: In the evidence of above Remark 1, the definition 4 establishes the prescribed time stable control which uses

an uneven exponential transformation of system states with a time varying feedback gain to achieve the prescribed time

control. Moreover, due to the use of uneven exponential transformation, the feedback gain becomes very high or more

control efforts are required while system states are negative (Remark 5). This limitation is adjusted in Proposition 1

with considering the linear time varying state-feedback system. This resolves the issues of high gain requirements for

the system to be controlled.

Proposition 1: Consider the equilibrium point (𝑥𝑒) of the system given by Eq. (12) lies in the domain 𝐷 ⊂ R𝑛. Assume

that 𝛽1 (𝑥) and 𝛽2 (𝑥) are the positive definite continuous functions on 𝐷 ⊂ R𝑛, then 𝑉 :𝐼 × 𝐷 → R+ ∪ {0} is a real and

continuously differentiable function that satisfies the following conditions
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𝛽1 (𝑥) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝛽2 (𝑥),∀𝑡 ∈ 𝐿,∀𝑥 ∈ 𝐷 − {0} (13)

𝑉 (𝑡, 0) = 0,∀𝑡 ∈ 𝐿 (14)

where 𝐿 = [𝑡0, 𝑡 𝑓 ) and 𝜂 ≥ 1 is a real number, then it implies that the equilibrium point (𝑥𝑒 = 0) is

(I) weakly prescribed arbitrary time stable and 𝑇 𝑓 ≤ 𝑡 𝑓 − 𝑡0, where 𝑇 𝑓 is the real fixed time and 𝑡 𝑓 is prescribed settling

time, when the following inequality holds

¤𝑉 ≤ −𝜂𝑉
𝑡 𝑓 − 𝑡

,∀𝑉 ≠ 0,∀𝑡 ∈ 𝐿 (15)

(II) strongly prescribed arbitrary time stable and and 𝑇 𝑓 = 𝑡 𝑓 − 𝑡0, when the following equality holds

¤𝑉 =
𝜂𝑉

𝑡 𝑓 − 𝑡
,∀𝑉 ≠ 0,∀𝑡 ∈ 𝐿 (16)

Proof: Firstly, the uniform stability of the system in Eq. (12) is proved as a result of uniform stability and

boundedness of the solution of 𝑉 (𝑡, 𝑥) can be concluded. It can be easily shown from Eq. 15 that ¤𝑉 (𝑡, 𝑥) ≤ 0

∀𝑥 and 𝑡 ∈ 𝐿. Let 𝜆 > 0 and 𝛼 > 0 such that 𝐵𝜆 ⊂ 𝐷,𝛼 < 𝑚𝑖𝑛∥𝑥 ∥=𝜆𝛽1 (𝑥), then, {𝑥 ∈ 𝐵𝜆 | 𝛽1 (𝑥) ≤ 𝛼} is the

interior of 𝐵𝜆 as shown in Fig. (1). Let’s define a time-dependent set 𝜓𝑡 ,𝛼 = {𝑥 ∈ 𝐵𝜆 |𝑉 (𝑡, 𝑥) ≤ 𝛼}. 𝜓𝑡 ,𝛼 contains

{𝑥 ∈ 𝐵𝜆 |𝛽2 (𝑥) ≤ 𝛼} since 𝛽2 (𝑥) ≤ 𝛼 =⇒ 𝑉 (𝑡, 𝑥) ≤ 𝛼. On the other hand, 𝜓𝑡0 ,𝛼 is a subset of {𝑥 ∈ 𝐵𝜆 |𝛽1 (𝑥) ≤ 𝛼}.

Since 𝑉 (𝑡, 𝑥) ≤ 𝛼 =⇒ 𝛽1 (𝑥) ≤ 𝛼,{𝑥 ∈ 𝐵𝜆 |𝛽2 (𝑥) ≤ 𝛼} ⊂ 𝜓𝑡 ,𝛼 ⊂ {𝑥 ∈ 𝐵𝜆 |𝛽2 (𝑥) ≤ 𝛼} ⊂ 𝐵𝜆 ⊂ 𝐷 for all 𝑡 ∈ 𝐿. Since

¤𝑉 (𝑡, 𝑥) ≤ 0 on 𝐷 ∀ 𝑥 ∈ 𝜓𝑡0 ,𝛼 and 𝑡 ∈ 𝐿, the solution starting at (𝑡0, 𝑥0) stays in 𝜓𝑡 ,𝛼 for all 𝑡 ∈ 𝐿. Therefore, any

solution starting in {𝑥 ∈ 𝐵𝜆 | 𝛽2 (𝑥) ≤ 𝜆} stays in 𝜓𝑡 ,𝛼 and consequently in {𝑥 ∈ 𝐵𝜆 | 𝛽1 (1) ≤ 𝛼}, for all 𝑡 ∈ 𝐿, since

¤𝑉 (𝑡, 𝑥) ≤ 𝑉 (𝑡0, 𝑥0) for all 𝑡 ∈ 𝐿 . For the given conditions, there exists class 𝜅 functions, 𝛾1 and 𝛾2 defined on [0, 𝜆]

such that

𝛾1 ∥ 𝑥 ∥≤ 𝛽1 (𝑥) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝛽2 (𝑥) ≤ 𝛾2 ∥ 𝑥 ∥ (17)

Combining the inequalities defined in Eq. (17), it can be deduced that it is seen as

∥ 𝑥(𝑡) ∥≤ 𝛾−1
1 𝑉 (𝑡, 𝑥(𝑡) ≤ 𝛾−1

1 𝑉 (𝑡0, 𝑥0) ≤ 𝛾−1
1 𝛾2 ∥ 𝑥(𝑡0) ∥

Since 𝛾−1
1 ◦ 𝛾2 is a class 𝜅 function , the inequality ∥ 𝑥 ∥≤ 𝛾−1

1 𝛾2 ∥ 𝑥(𝑡0) ∥ shows that the origin is uniformly stable [28].
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𝑫

𝑩𝝀

𝜷𝟏 ≤ 𝜶

𝜷𝟐 ≤ 𝜶

𝑽 ≤ 𝜶

Fig. 1 Geometric representation of sets in proof of proposition 1.

Now, the proof of the prescribed arbitrary time strong stability can be presented. Let us assume that 𝑉 (𝑡, 𝑥) satisfies

the differential inequality defined by Eq. (15) for the initial condition, 𝑉 (0, 𝑥0) = 𝑉 (𝑡0, 𝑥0). Assume that 𝑉 (𝑡) is the

solution of the following differential equation
𝑑𝑉

𝑑𝑡
=

−𝜂𝑉
𝑡 𝑓 − 𝑡

(18)

Integrating Eq. (18) from 0 → 𝑡, yields

∫ 𝑡

0

𝑑𝑉

𝑉
=

∫ 𝑡

0

−𝜂𝑑𝑡
𝑡 𝑓 − 𝑡

𝑙𝑛( 𝑉
𝑉0

) = 𝜂𝑙𝑛(
𝑡 𝑓 − 𝑡
𝑡 𝑓

)

where 𝜂 ≥ 1 ∈ R. The solution of Eq. (18) becomes

𝑉 (𝑡) = 𝑉0 (1 − 𝑡

𝑡 𝑓
)𝜂 (19)

where 𝑉0 = 𝑉 (𝑡0). From Eq. (19), we have

¤𝑉 (𝑡) = −𝜂𝑉0
𝑡 𝑓

(1 − 𝑡

𝑡 𝑓
)𝜂−1 (20)

From Eq. (20), it can be seen that ¤𝑉 dynamics yields to be zero at 𝑡 = 𝑡 𝑓 and from Eq. (19), 𝑉 (𝑡) = 0 at 𝑡 = 𝑡 𝑓 ;

hence, ∀𝑡 ≥ 𝑡 𝑓 , 𝑉 (𝑡) = 0 is maintained.This proves the strong prescribed arbitrary time stability for 𝑧. Therefore,

𝑇𝑎 = 𝑡 𝑓 − 𝑡0 = 𝑇 𝑓 . The following Lemma 1 is considered for showing the weak prescribed time stability of 𝑉 (𝑡, 𝑥).

Lemma 1(Comparison Lemma): Consider the following scalar differential equation.

¤𝑉1 = 𝑓 (𝑡, 𝑉1), 𝑉1 (𝑡0) = 𝑉10

where 𝑓 (𝑡, 𝑉1) is continuous in 𝑡 and locally Lipschitz in 𝑉1 for all 𝑡 ≥ 0 and all 𝑉1 ∈ 𝐽 ⊂ 𝑅. Let [𝑡0, 𝑇) (𝑇 could be
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infinity) be the maximal interval of existence of solution of 𝑉1 (𝑡) , and suppose 𝑉1 (𝑡) ∈ 𝐽 for all [𝑡0, 𝑇). Let 𝑉2 (𝑡) be a

continuous function whose upper right-hand derivative 𝐷+𝑉2 (𝑡) satisfies the differential inequality

𝐷+𝑉2 (𝑡) ≤ 𝑓 (𝑡, 𝑉1), 𝑉2 (𝑡0) ≤ 𝑉10

with 𝑉2 (𝑡) ∈ 𝐽 for all [𝑡0, 𝑇). Then, 𝑉2 (𝑡) ≤ 𝑉1 (𝑡) for all 𝑡 ∈ [𝑡0, 𝑇) [28].

Now based on the above Lemma 1, the weakly prescribed time stability can be proven. Let us consider the scalar

differential equation given by Eq. (18) and the solution of Eq. (18) is given by Eq. (19). And, the rate of change of Eq.

(19) is given by Eq. (20) . It was shown that 𝑉 (𝑡) and ¤𝑉 (𝑡) go to zero as 𝑡 → 𝑡 𝑓 . Now, if we consider the weak stability

criteria ¤𝑉 ≤ −𝜂𝑉

𝑡 𝑓 −𝑡 , From Comparison Lemma 1, it can be concluded that the solution of 𝑉 (𝑡) and its derivative will

satisfy the inequalities

𝑉 (𝑡) ≤ 𝑉0 (1 − 𝑡

𝑡 𝑓
)𝜂 (21)

and

¤𝑉 (𝑡) ≤ −𝜂𝑉0
𝑡 𝑓

(1 − 𝑡

𝑡 𝑓
)𝜂−1 (22)

From Eqs. (21) and (22), it can be concluded that 𝑉 (𝑡) and ¤𝑉 (𝑡) go to zero as 𝑡 → 𝑡 𝑓 . Therefore, the weak prescribed

arbitrary time stability of 𝑉 (𝑡, 𝑥) has been proven which results into 𝑇 𝑓 ≤ 𝑡 𝑓 − 𝑡0. The completes the proof of the

Proposition 1. Based on the above Proposition 1, the control law has been designed and shown in the following Section

4. The differential inequality given by Eq. (15) nicely fit into the backstepping framework which is shown later.

V. Control Design
The following section describes the backstepping framework for the proposed linear differential inequality Eq. 15.

Explicit derivation for the prescribed arbitrary time controller is given for the first and second order systems, followed

by the prescribed time stabilizing nature of the same linear differential inequality Eq. 15 is proven for 𝑛𝑡ℎorder system

by using arguments based on the principle of mathematical induction.

A. First order system

Consider the following first order system

¤𝑥 = 𝑢; 𝑥(𝑡0) = 𝑥0 (23)

10
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Fig. 2 First order system trajectory for arbitrary initial conditions.

where 𝑥 ∈ R is the state of the system, 𝑢 ∈ 𝑅+∪{0}×𝑅 → 𝑅 is control, 𝑥 = 0 is the origin of Eq. (23), and 𝑡0 ∈ R+∪{0}

is the initial time. The control law is designed as

𝑢 =


−𝜂𝑥

𝑡 𝑓 −𝑡 𝑡0 ≤ 𝑡 < 𝑡 𝑓

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(24)

Let the Lyapunov function for the system given by Eq. (23)

𝑉 =
1
2
𝑥2 (25)

And, the time derivative of the Lyapunov function gets reduced to

¤𝑉 = 𝑥 ¤𝑥 = −𝜂𝑥2

𝑡 𝑓 − 𝑡
=
−2𝜂𝑉
𝑡 𝑓 − 𝑡

(26)

Based on the Proposition 1, the Eq. (26) has the same structure as that of the dynamics of strongly prescribed arbitrary

time stable system. Hence, it can be easily shown that 𝑥 = 0 at 𝑡 = 𝑡 𝑓 . Again, from Eqs. (23) and (24), ¤𝑥 = 0 for

𝑡 ≥ 𝑡 𝑓 . Hence, Eq. (23) is prescribed arbitrary time stable system with the control law given by Eq. (24). Simulations

for the first order system trajectory for arbitrary initial conditions are shown in Fig. (2). The simulations verify the

theoretical conclusions for the prescribed time convergence. In all cases, the state of the system converges to the origin

in prescribed time 𝑡 𝑓 = 7𝑠.

11
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Fig. 3 First order system trajectory.

Remark 3

The origin of differential Eq. (18) is attributed to the exponential decay equation, ¤𝑥 = −𝑘𝑥, where 𝑘 is a constant.

If 𝑘 is changed to 𝑘 (𝑡) = 𝜂/(𝑡 𝑓 − 𝑡) as a time-varying gain, the solution of the resulting non-autonomous equation

( ¤𝑥 = −𝑘 (𝑡)𝑥) becomes prescribed time convergent.

Remark 4

Since the solution of Eqs. (17) and (18) are same, from Eqs. (19) and (20), the expression | ¤𝑥 | = 𝜂𝑥0
𝑡 𝑓

(1 − 𝑡
𝑡 𝑓
)𝜂−1 is

always bounded and it can be easily seen that | ¤𝑥 | ≤ 𝜂 |𝑥0 |
𝑡 𝑓

for ∀𝑡 ∈ [0, 𝑡 𝑓 ). The maximum value of the control input

(| ¤𝑥 | = |𝑢 |) occurs at the initial point when the system is at maximum distance from the equilibrium.

Remark 5

The control input defined in Eq. (24) grows linearly with respect to the state of system; whereas, in [18], input grows

exponentially when state 𝑥 < 0 because ¤𝑥 =
−𝜂 (1−𝑒−𝑥 )

𝑡 𝑓 −𝑡 , which implies | ¤𝑥 | ≤ 𝜂 |1−𝑒−𝑥0 |
𝑡 𝑓

. Clearly, for the same initial

conditions (i.e., 𝑥0 < 0, 𝜂 and 𝑡 𝑓 ) considered in [18], the demanded control input is comparatively high in magnitude in

[18] compared to the current findings in this paper. The figure (3) shows the simulation of a first order system with the

initial conditions 𝑥(0) = 5, 𝜂 = 2 and 𝑡 𝑓 = 7. It can be seen from Fig. (3) that the maximum value of the demanded

control input is relatively high in magnitude (dotted line) using the method considered in [18] compared to the proposed

approach (solid line) in this paper. Also, using the present approach, the system trajectory follows a smooth convergence

to the origin; whereas, in [18], though the states follows a smooth path until time 𝑡 𝑓 , but there is a steep convergence for

𝑡 > 𝑡 𝑓 . The abrupt change of state also corresponds to a the highest demanded control input.

Also, as discussed by [23], the control input for the approach in [18] becomes very large when 𝑥(0) < 0. This

condition is shown in Fig. (4) for 𝑥(0) = −3, 𝜂 = 2 and 𝑡 𝑓 = 7. It can be seen that with the proposed concept, though the

convergence scenarios more or less are similar but the requirement of control input is relatively less with the proposed

method.
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Fig. 4 First order system trajectory for negative initial condition.

B. Second order system

In this sub-section, we extend the concept of prescribed time control to the second order system. Consider the

following second order system

¤𝑥1 = 𝑥2, ¤𝑥2 = 𝑢 (27)

Let 𝑥2𝑑 be the desired value of 𝑥2, then based on the Eq. (24),𝑥2𝑑 can be written as

𝑥2𝑑 =
−𝜂1𝑥1
𝑡 𝑓 − 𝑡

= −𝜙1, 𝜂1 ≥ 1 (28)

Let 𝜙1 = (𝜂1𝑥1)/(𝑡 𝑓 − 𝑡), to backstep, let the change of variable denoted by 𝑤2 as

𝑤2 = 𝑥2 − 𝑥2𝑑 = 𝑥2 + 𝜙1 (29)

Taking the time derivative of Eq. (29), we have

¤𝑤2 = ¤𝑥2 +
𝜕𝜙1
𝜕𝑥1

¤𝑥1 +
𝜕𝜙1
𝜕𝑡

(30)

So, the transformed system becomes

¤𝑥1 = 𝑤2 − 𝜙1, ¤𝑤2 = 𝑢 + 𝜕𝜙1
𝜕𝑥1

¤𝑥1 +
𝜕𝜙1
𝜕𝑡

(31)

Let the Lyapunov function be

𝑉 =
1
2
(𝑥2

1 + 𝑤
2
2) (32)

then, on differentiating Eq. (32), yields

¤𝑉 = 𝑥1 ¤𝑥1 + 𝑤2 ¤𝑤2 (33)

13



Substituting Eqs. (30) and (31) in Eq. (33),

¤𝑉 = 𝑥1 (𝑤2 − 𝜙1) + 𝑤2 (𝑢 +
𝜕𝜙1
𝜕𝑥1

(𝑤2 − 𝜙1) +
𝜕𝜙1
𝜕𝑡

) (34)

Now, the control law is taken as

𝑢 =


−𝑥1 − 𝜕𝜙1

𝜕𝑥1
(𝑤2 − 𝜙1) − 𝜕𝜙1

𝜕𝑡
− 𝜙2 𝑡0 ≤ 𝑡 < 𝑡 𝑓

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(35)

where

𝜙2 =
𝜂2𝑤2
𝑡 𝑓 − 𝑡

Using the Eqs. (28) and (35), Eq. (34) becomes

¤𝑉 = −𝑥1𝜙1 − 𝑥2𝜙2

= −
𝜂1𝑥

2
1

𝑡 𝑓 − 𝑡
−
𝜂2𝑥

2
2

𝑡 𝑓 − 𝑡
(36)

Let 𝜂2 > 𝜂1 or 𝜂2 = 𝜂1 + 𝜀, where 𝜀 > 0 is a small positive number, then Eq. (36) can be written as

¤𝑉 = −
𝜂1𝑥

2
1

𝑡 𝑓 − 𝑡
−
𝜂1𝑤

2
2

𝑡 𝑓 − 𝑡
−
𝜀𝑤2

2
𝑡 𝑓 − 𝑡

(37)

Since 𝜀𝑤2
2

𝑡 𝑓 −𝑡 ≥ 0, Eq. (37) becomes

¤𝑉 ≤ −
𝜂1 (𝑥2

1 + 𝑤
2
2)

𝑡 𝑓 − 𝑡
(38)

In the right side of Eq. (38), the expression
(
𝑥2

1 + 𝑤
2
2
)

can be replaced by 2𝑉 Eq. (32) and the Eq. (38) gets reduced to

¤𝑉 ≤ − 2𝜂1𝑉

𝑡 𝑓 − 𝑡
(39)

Now, according to the Proposition 1, it can be said that Eq. (39) is the dynamics of prescribed arbitrary time weak stable

system. Hence, by the similar arguments made for the first order system (sub-section 4.1), it can be concluded that

𝑉 = 0 at 𝑡 ≤ 𝑡 𝑓 . Further, the control law defined by Eq. (35) takes the system states to 𝑥1 = 0 and 𝑤2 = 0 at 𝑡 ≤ 𝑡 𝑓 . In

the following, the prescribed time control can be proved for 𝑛 + 1𝑡ℎ order system. It is assumed that there is a control

input denoted by 𝑢𝑛 can stabilize the system of order 𝑛 in prescribed arbitrary time. By inspecting Eqs. (25) and (32),
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the Lyapunov function can be constructed for an 𝑛 + 1𝑡ℎorder system as

𝑉𝑛+1 = 𝑉𝑛 +
1
2
𝑤2
𝑛+1 (40)

where 𝑉𝑛 and 𝑉𝑛+1 are the Lyapunov functions for the systems of order 𝑛 and 𝑛 + 1, respectively. Taking the time

derivative of Eq. (40), yields

¤𝑉𝑛+1 =
𝜕𝑉𝑛

𝜕𝑥1
¤𝑥1 +

𝜕𝑉𝑛

𝜕𝑤2
¤𝑤2 + ... +

𝜕𝑉𝑛

𝜕𝑤𝑛

¤𝑤𝑛 + 𝑤𝑛+1 ¤𝑤𝑛+1 (41)

After simplification, Eq. (41) becomes

¤𝑉𝑛+1 = 𝑥1 ¤𝑥1 + 𝑤2 ¤𝑤2 + ... + 𝑤𝑛 ¤𝑤𝑛 + 𝑤𝑛+1 ¤𝑤𝑛+1 (42)

Let 𝑢𝑛+1 be the control for 𝑛 + 1𝑡ℎ order system, then using the change of variable defined in Eq. (29), Eq. (42) can be

written as

¤𝑉𝑛+1 = −𝑥1𝜙1 − 𝑤2𝜙2... − 𝑤𝑛𝜙𝑛 − 𝑤𝑛+1 ¤𝑤𝑛+1

= −𝑥1𝜙1 − 𝑤2𝜙2... − 𝑤𝑛𝜙𝑛 − 𝑤𝑛+1 (𝑢𝑛+1 − ¤𝑥 (𝑛+1)𝑑) (43)

where

𝜙𝑛 =
𝜂𝑛𝑤𝑛

𝑡 𝑓 − 𝑡
, 𝜂𝑛 ≥ 1, 𝑛 ≥ 2 (44)

In Eq. (43), 𝑢𝑛+1 can be derived for the 𝑛 + 1𝑡ℎ order system by following the backstepping procedure described in

sections 4.1 and 4.2 for the first and second order systems, respectively, and given here in an abstract form as

¤𝑥1 = 𝑥2

¤𝑥2 = 𝑥3

. . .

¤𝑥𝑛 = 𝑥𝑛+1

¤𝑥𝑛+1 = 𝑢𝑛+1 (45)
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Using Eq. (29), 𝑢𝑛+1 can be expressed as

𝑢𝑛+1 = −𝑥𝑛 + ¤𝑥 (𝑛+1)𝑑 (46)

where 𝑥 (𝑛+1)𝑑 acts as a virtual control and stabilizes the system up to order 𝑛. The expression 𝑥 (𝑛+1)𝑑 is related to the

previous states in the following means

𝑥 (𝑛+1)𝑑 = 𝑓 (𝑥1, 𝑥2, ...𝑥𝑛)

or,

¤𝑥 (𝑛+1)𝑑 =
𝜕 𝑓

𝜕𝑥1
¤𝑥1 +

𝜕 𝑓

𝜕𝑥2
¤𝑥2 + ...... +

𝜕 𝑓

𝜕𝑥𝑛
¤𝑥𝑛 +

𝜕 𝑓

𝜕𝑡

Now, substituting the expressions of 𝑢𝑛+1 ,𝑥𝑛+1, ¤𝑥 (𝑛+1)𝑑 and 𝜙𝑛 in Eq. (43) and using the definition of quadratic

Lyapunov function defined in Eq. (40) , expression of ¤𝑉𝑛+1 in Eq. (43) gets reduced

¤𝑉𝑛+1 ≤ −2𝜂𝑚𝑖𝑛𝑉

𝑡 𝑓 − 𝑡
, 𝜂𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝜂𝑖 |𝑖 = 1, 2, 3...𝑛) (47)

By invoking Proposition 1, it can be concluded that 𝑛𝑡ℎ order system becomes prescribed arbitrary time stable. And, by

mathematical induction, the above result holds for any arbitrary 𝑛 ∈ N. This completes the proof that 𝑛𝑡ℎ order system

is prescribed arbitrary time stabilizable with the control 𝑢𝑛.

C. Boundedness of 𝑢(𝑡)

In this sub-section, the boundedness of the proposed control given by Eq. (35) is shown. Let 𝑢𝑚𝑎𝑥 be the maximum

required control, then from Eq. (35), it can be seen that 𝑢 = 𝑢𝑚𝑎𝑥 will occur at 𝑡 ≤ 𝑡 𝑓 . The first part of Eq. (35) is

rewritten as

𝑢 = −𝑥1 −
𝜕𝜙1
𝜕𝑥1

(𝑤2 − 𝜙1) −
𝜕𝜙1
𝜕𝑡

− 𝜙2 (48)

Now, using the definitions of 𝜙1 = (𝜂1𝑥1)/(𝑡 𝑓 − 𝑡) and 𝜙2 = (𝜂2𝑤2)/(𝑡 𝑓 − 𝑡), 𝜕𝜙1/𝜕𝑥1 and 𝜕𝜙1/𝜕𝑡 are obtained as

𝜕𝜙1
𝜕𝑥1

=
𝜂1

𝑡 𝑓 − 𝑡
(49)

𝜕𝜙1
𝜕𝑡

=
𝜂1𝑥1

(𝑡 𝑓 − 𝑡)2 (50)

Using Eqs. (48), (49) , (50) and (29), Eq. (48) becomes
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𝑢 = −𝑥1 −
𝜂1𝑥2
𝑡 𝑓 − 𝑡

− 𝜂1𝑥1

(𝑡 𝑓 − 𝑡)2 −
𝜂2 (𝑥2 + 𝜂1𝑥1

𝑡 𝑓 −𝑡 )
𝑡 𝑓 − 𝑡

= −𝑥1 −
(𝜂1 + 𝜂2)𝑥2 + 𝜂1𝜂2𝑥1

𝑡 𝑓 − 𝑡
− 𝜂1𝑥1

(𝑡 𝑓 − 𝑡)2 (51)

Now, the boundedness of control torque 𝑢 will be proven using the extreme value theorem. If a real-valued function 𝑢(𝑡)

is continuous on a closed interval 𝑡 ∈ [𝑎, 𝑏], then 𝑢 must attain a maximum and a minimum each at least once. As a

result, 𝑢(𝑡) will remain bounded on that interval. Now, the control input 𝑢(𝑡) defined in Eq. (51) on the interval [0, 𝑡 𝑓 )

can be written as

𝑢(0) = −𝑥1 (0) −
(𝜂1 + 𝜂2)𝑥2 (0) + 𝜂1𝜂2𝑥1 (0)

𝑡 𝑓
− 𝜂1𝑥1 (0)

𝑡2
𝑓

(52)

Let us assume that 𝜂1 ≥ 1 and 𝜂2 ≥ 1 are sufficiently large such that 𝑥1 → 0, 𝑥2 → 0, as 𝑡 → 𝑡 𝑓 . For 𝑡 → 𝑡 𝑓 , the

term 𝑢(𝑡 𝑓 ) in Eq. (51) goes to infinity, i.e., 𝑢(𝑡 𝑓 ) → ∞; but both the numerator and the denominator in 2𝑛𝑑 and 3𝑟𝑑

terms (denoted by 𝑇2 and 𝑇3) of Eq. (51) tends to zero, making it a state of undefined. The limits of these terms can be

estimated using L’Hopital’s rule as following. Let us assume lim𝑡→𝑡 𝑓 𝑢(𝑡) = lim𝑡→𝑡 𝑓 ¤𝑥2 (𝑡) = 𝐿, then

𝑇2 =

𝑑
𝑑𝑡

[
(𝜂1 + 𝜂2)𝑥2 (𝑡 𝑓 ) + 𝜂1𝜂2𝑥1 (𝑡 𝑓 )

]
𝑑
𝑑𝑡

[
𝑡 𝑓 − 𝑡

]
= −(𝜂1 + 𝜂2) ¤𝑥2 (𝑡 𝑓 ) − 𝜂1𝜂2 ¤𝑥1 (𝑡 𝑓 )

= −(𝜂1 + 𝜂2)𝐿 − 𝜂1𝜂2𝑥2 (53)

𝑇3 =

𝑑
𝑑𝑡

[
𝜂1𝑥1 (𝑡 𝑓 )

]
𝑑
𝑑𝑡

[
(𝑡 𝑓 − 𝑡)2

] = −
𝜂1 ¤𝑥1 (𝑡 𝑓 )

2
= −

𝜂1𝑥2 (𝑡 𝑓 )
2

(54)

Using the above terms for 𝑡 → 𝑡 𝑓 , Eq. (51) can be simplified as

𝐿 = −𝑥1 (𝑡 𝑓 ) − 𝑇2 − 𝑇3

= −𝑥1 (𝑡 𝑓 ) + (𝜂1 + 𝜂2)𝐿 + 𝜂1𝜂2𝑥2 (𝑡 𝑓 ) +
𝜂1𝑥2 (𝑡 𝑓 )

2

=
−𝑥1 (𝑡 𝑓 ) + 𝜂1𝜂2𝑥2 (𝑡 𝑓 ) +

𝜂1𝑥2 (𝑡 𝑓 )
2

1 − 𝜂1 − 𝜂2
(55)
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Fig. 5 Control at initial time 𝑢(0) 𝑣𝑠. desired convergence time 𝑡 𝑓 .

From Eqs. (52) and (55), it is clear that the values of 𝑢(0) and 𝑢(𝑡 𝑓 ) → 𝐿 are finite value; hence, 𝑢(𝑡) is continuous on

the interval [0, 𝑡 𝑓 ). From the above analysis, it can be stated that using the extreme value theorem, 𝑢(𝑡) is bounded on

the interval [0, 𝑡 𝑓 ) under the assumptions 𝜂1 ≥ 1 and 𝜂2 ≥ 1 such that 𝑥1 → 0, 𝑥2 → 0, as 𝑡 → 𝑡 𝑓 using the control

law defined by Eq. (51). Now, the effect of 𝑡 𝑓 will be examined on 𝑢(𝑡). Let us consider the initial conditions for the

system given by Eq. (27) are 𝑥1 (0) = −0.1, 𝑥2 (0) = 0.1 and the control gains are 𝜂1 = 𝜂2 = 2. The control requirement

is shown in Fig. (5) at 𝑡 = 0. It can be stated that the control requirement drastically reduces if we relax the desired

convergence time. Note that if 𝑡 𝑓 → ∞, the control becomes |𝑢 | ≤ |−𝑥1 (0) | Eq. (52) and structurally looks like a

simple proportional feedback control with unity gain. In the next section, the application of the proposed control is

extended for the attitude control of a satellite.

D. Spacecraft Control with no disturbance

In this section, the application of the prescribed time arbitrary control algorithm is discussed on the attitude dynamics

of a rigid spacecraft. For designing the proposed control, a complete knowledge of system dynamics is required. The

derivation of the controller for the satellite attitude control without disturbances is described in this part, and the

disturbance term is incorporated in the dynamics in the next section.

Proposition 2: If the error dynamics in Eq. (58) is considered with 𝑑 (𝑡) = 0, a control command 𝑢 ∈ R3 can be

designed for the attitude stabilization and tracking control such that for any initial condition 𝑞(0) and 𝜔(0), the

quaternion error approaches to unit quaternion 𝑞 = [1, 0, 0, 0]𝑇 and the error in angular velocity approaches to zero

𝜔𝑒 = 𝜔 − 𝜔𝑑 = [0, 0, 0]𝑇 within desired time 𝑡 𝑓 . The proposed control is given by

𝑢 =


𝐽 (2𝐺 (−𝑞𝑒 − 𝑃𝑞𝑤 − ¤𝜙 − 𝜇) + ¤𝜔𝐵

𝑑
) + 𝜔̂𝐽𝜔, 𝑡0 ≤ 𝑡 < 𝑡 𝑓

2𝐽 ¤𝜔𝐵
𝑑
+ 𝜔̂𝐽𝜔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(56)

where 𝜙 = [𝜙1, 𝜙2, 𝜙3, 𝜙4]𝑇 ∈ R4 and 𝜇 = [𝜇1, 𝜇2, 𝜇3, 𝜇4]𝑇 ∈ R4 or

𝜙𝑖 =
𝜂𝑖𝑞𝑒

𝑡 𝑓 − 𝑡
, 𝜇𝑖 =

𝜂 𝑗 (𝑞𝑤𝑖 + 𝜙𝑖)
𝑡 𝑓 − 𝑡
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where 𝑖 = 1, 2, 3, 4; 𝑗 = 5, 6, 7, 8, 𝜂𝑖 , 𝜂 𝑗 ≥ 1, 𝑞𝑒 = 𝑞𝑒 − 𝑞𝐼 , 𝑞𝐼 = [1, 0, 0, 0]𝑇 is a unit quaternion and 𝑃 ∈ R4×4 with

𝑎, 𝑏 = {1, 2, 3, 4} is defined as

𝑃 =

[
𝜕𝜙𝑎

𝜕𝑞𝑒𝑏

]
=



𝜕𝜙1
𝜕𝑞̃𝑒1

0 0 0

0 𝜕𝜙2
𝜕𝑞̃𝑒2

0 0

0 0 𝜕𝜙3
𝜕𝑞̃𝑒3

0

0 0 0 𝜕𝜙4
𝜕𝑞̃𝑒4


(57)

Proof: The system given by Eq. (10) can be written in a cascaded form as follows

¤𝑞𝑒 = 𝑞𝑤 , ¤𝑞𝑤 = 𝑢1 (58)

where

𝑢1 =
1
2
𝐺𝑇 ( ¤𝜔 − ¤𝜔𝐵

𝑑 )

𝑞𝑤 =
1
2
𝑞𝑒 ⊗ (𝝎 − 𝝎𝐵

𝑑 )

where 𝑢1 is a prescribed arbitrary time controller which will be designed later in this section. Using Eq. (2), 𝑢1 can be

written as following

𝑢1 =
1
2
𝐺𝑇 (𝐽−1 (𝑢 − 𝜔̂𝐽𝜔) − ¤𝜔𝐵

𝑑 ) (59)

Backstepping approach is used to derive the control torque 𝑢 which will ensure the convergence of the quaternion vector

part and error in angular velocity to zero in desired time 𝑡 𝑓 . To backstep, we define another variable as

𝑞𝑤 = 𝑞𝑤 − 𝑞𝑤𝑑 (60)

where 𝑞𝑤𝑑 is the desired value of 𝑞𝑤 which acts as virtual control and according to the Eq. (29) defined as

𝑞𝑤𝑑 = −𝜙(𝑞𝑒1, 𝑞𝑒2, 𝑞𝑒3, 𝑞𝑒4) = −𝜙 (61)

where 𝜙 is defined as follows

𝜙 =

[
𝜂1𝑞𝑒1
𝑡 𝑓 − 𝑡

,
𝜂2𝑞𝑒2
𝑡 𝑓 − 𝑡

,
𝜂1𝑞𝑒3
𝑡 𝑓 − 𝑡

,
𝜂1𝑞𝑒4
𝑡 𝑓 − 𝑡

]𝑇
(62)

19



Now, Eq. (60) becomes

𝑞𝑤 = 𝑞𝑤 + 𝜙 (63)

Taking the time derivative of Eq. (63), yields

¤̃𝑞𝑤 = ¤𝑞𝑤 + ¤𝜙 + 𝑃 ¤̃𝑞𝑒 (64)

where 𝑃 represents 𝜕𝜙

𝜕𝑞̃𝑒
as described in Eq. (57). Now, the Eq. (58) using the above transformations becomes

¤̃𝑞𝑒 = 𝑞𝑤 − 𝜙, ¤̃𝑞𝑤 = 𝑢1 + ¤𝜙 + 𝑃 ¤̃𝑞𝑒 (65)

It can be noted in Eq. (65) that ¤̃𝑞𝑒 = ¤𝑞𝑒 since 𝑞𝑒 = 𝑞𝑒 − 𝑞𝐼 . Now, consider the following Lyapunov function

𝑉 =
1
2
𝑞𝑇𝑒 𝑞𝑒 +

1
2
𝑞𝑇𝑤𝑞𝑤 (66)

Taking the time derivative o f 𝑉 , yields

¤𝑉 = 𝑞𝑇𝑒
¤̃𝑞𝑒 + 𝑞𝑇𝑤 ¤̃𝑞𝑤

= 𝑞𝑇𝑒 (𝑞𝑤 − 𝜙) + 𝑞𝑇𝑤 (𝑢1 + ¤𝜙 + 𝑃 ¤̃𝑞𝑒)

= 𝑞𝑇𝑒 (𝑞𝑤 − 𝜙) + 𝑞𝑇𝑤 (𝑢1 + ¤𝜙 + 𝑃𝑞𝑤) (67)

Let the control be

𝑢1 =


−𝑞𝑒 − ¤𝜙 − 𝑃𝑞𝑤 − 𝜇(𝑞𝑤) 𝑡0 ≤ 𝑡 < 𝑡 𝑓

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(68)

where

𝜇 =

[
𝜂1𝑞𝑤1
𝑡 𝑓 − 𝑡

,
𝜂2𝑞𝑤2
𝑡 𝑓 − 𝑡

,
𝜂3𝑞𝑤3
𝑡 𝑓 − 𝑡

,
𝜂4𝑞𝑤4
𝑡 𝑓 − 𝑡

]𝑇
(69)

After substituting the value of 𝑢1 into Eq. (67) and using the relation 𝑞𝑇𝑒 ˜𝑞𝑤 = ˜𝑞𝑤𝑇𝑞𝑒, we get

¤𝑉 = −𝑞𝑇𝑒 𝜙 − 𝑞𝑇𝑤𝜇 (70)

Using the Eqs. (62),(69), Eq. (70) can be written as
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¤𝑉 = −
4∑︁

𝑘=1

𝜂𝑘𝑞
2
𝑒𝑘

𝑡 𝑓 − 𝑡
−

4∑︁
𝑘=1

𝜂𝑘+4𝑞
2
𝑤𝑘

𝑡 𝑓 − 𝑡
(71)

Let us assume 𝜂𝑚𝑖𝑛 = 𝜂1, one of the 𝜂𝑖 (𝑖 = 1, 2, 3...8) will be minimum so either of the 8 coefficients can be taken as

minimum for the following proof. Now, for a small quantity 𝜖 𝑗 ≥ 0, the following holds

𝜂 𝑗+1 = 𝜂𝑚𝑖𝑛 + 𝜖 𝑗 , 1 ≤ 𝑗 ≤ 7

Substituting the above coefficients in Eq. (71), we get

¤𝑉 = −𝜂𝑚𝑖𝑛

4∑︁
𝑘=1

1
𝑡 𝑓 − 𝑡

[
𝑞2
𝑒𝑘 + 𝑞

2
𝑤𝑘

]
−
[ 3∑︁
𝑘=2

𝜖𝑘𝑞
2
𝑒𝑘

𝑡 𝑓 − 𝑡
+

4∑︁
𝑘=1

𝜖𝑘+3𝑞
2
𝑤𝑘

𝑡 𝑓 − 𝑡

]
(72)

Let us denote

𝜆 =

3∑︁
𝑘=2

𝜖𝑘𝑞
2
𝑒𝑘

𝑡 𝑓 − 𝑡
+

4∑︁
𝑘=1

𝜖𝑘+3𝑞
2
𝑤𝑘

𝑡 𝑓 − 𝑡
(73)

Similar to the logic used in the Eqs. (37) and (38), 𝜆 ≥ 0. And, the term in Eq. (72) can be written as

4∑︁
𝑘=1

[
𝑞2
𝑒𝑘 + 𝑞

2
𝑤𝑘

]
= 𝑞𝑇𝑒 𝑞𝑒 + 𝑞𝑇𝑤𝑞𝑤 (74)

Using the Eqs. (73) and (74), the Eq. (72) gets reduced

¤𝑉 ≤ −
𝜂𝑚𝑖𝑛 (𝑞𝑇𝑒 𝑞𝑒 + 𝑞𝑇𝑤𝑞𝑤)

𝑡 𝑓 − 𝑡

≤ −2𝜂𝑚𝑖𝑛𝑉

𝑡 𝑓 − 𝑡
(75)

Hence ¤𝑉 ≤ 0 and therefore, as stated in proposition 1, the attitude error and the error in angular velocity approach to

zero as 𝑡 → 𝑡 𝑓 . It can be noted that the control law 𝑢 can be found out by substituting virtual control 𝑢1 derived from

(68) into (59). Now, the prescribed time convergence properties of the proposed control law in Eq. (56) for arbitrary

initial conditions listed in Table (1) are demonstrated in Fig. (6) via simulations. The simulations are in agreement with

the theoretical results. In all cases, the attitude quaternion and the angular velocity converge to the desired values of

𝑞𝑑 = [1, 0, 0, 0]𝑇 and 𝜔 = [0, 0, 0]𝑇𝑟𝑎𝑑/𝑠 within the prescribed convergence time 𝑡 𝑓 = 5𝑠.

As it was demonstrated in the case of first order system for negative initial conditions, the control input required for

the prescribed time convergence was always higher when using the method of [18] than the method proposed in this paper

due to the uneven and exponential state feedback . We demonstrate that for negative initial conditions, spacecraft attitude

control also requires higher control input with the method in [18] than the method in this paper. The simulations are shown
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Fig. 6 Spacecraft attitude and angular velocity convergence in prescribed time for arbitrary initial conditions
(Rest To Rest Manoeuvre for 𝑡 𝑓 = 5𝑠).

S. No 𝑞(0) 𝜔(0) (𝑟𝑎𝑑/𝑠)
1 [0.1601, 0.3203, 0.4804, 0.8006] [0, 0, 0]
2 [0.1601,−0.3203,−0.4804, 0.8006] [0, 0, 0]
3 [0.1091,−0.5455, 0.3273, 0.7638] [0, 0, 0]
4 [0.0662, 0.8609,−0.1987,−0.4636] [0, 0, 0]

Table 1 Arbitrary initial conditions for attitude.
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Fig. 7 Block diagram for control architecture.
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Fig. 8 Comparison of attitude quaternion, angular velocity and control torque for the proposed paper with
those of the [18] for 𝑡 𝑓 = 5𝑠.

in Fig. (8). The simulations were conducted for the initial condition 𝑞(0) = [−0.1091,−0.3273,−0.5455,−0.7638]𝑇

, 𝜔(0) = [0, 0, 0]𝑇 and 𝑡 𝑓 = 5𝑠. The controller parameters for [18] were taken as 𝜂𝑖 = 5, (𝑖 = 1, 2, 3...8) and for this

paper’s method 𝜂𝑖 = 7 was taken. For a fair comparison, the controller parameters in the case of [18] were taken as

low as possible while showing smooth convergence. The simulations show that even with smaller controller gains

the method of [18] requires as much as twice the control torque along all three axes in comparison with the method

presented in this paper. In the next section, we design the robust control for 𝑡 ≥ 𝑡 𝑓 , after the system reaches to the

equilibrium. Before 𝑡 < 𝑡 𝑓 , the time-varying gain can cancel the disturbances affecting the system dynamics. But, after

𝑡 ≥ 𝑡 𝑓 , only the desired attitude derivative and the nonlinear terms in spacecraft dynamics are canceled. Therefore, it is

necessary to provide robustness against disturbances to the presented control law.

E. Robustness Analysis

In order to cancel bounded disturbances, a sliding mode controller is added to the backstepping framework, making

the combined controller a robust controller in nature. An exponential reaching law based sliding mode controller is used

to cancel the disturbance. With considering the disturbance in the system defined by Eq. (58), yields

¤𝑞𝑒 = 𝑞𝑤 , ¤𝑞𝑤 = 𝑢𝑟 + 𝑇𝑑 (76)

where 𝑇𝑑 = 1
2𝐺

𝑇 𝐽−1𝑑 (𝑡) is a Lipschitz continuous signal and 𝑢𝑟 is a robust control which composed of 𝑢1 (prescribed
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arbitrary time control) and sliding mode control (denoted by 𝑢𝑆𝑀𝐶 ) that helps the controller to reject the disturbance. It

is assumed that 𝑇𝑑 is bounded by ∥ 𝑇𝑑 ∥≤ 𝜏𝑑 , where 𝜏𝑑 is the bound of the disturbance. The 𝑢𝑟 can be written as

𝑢𝑟 = 𝑢1 + 𝑘𝑢𝑆𝑀𝐶 (77)

where 𝑘 is defined as follows:

𝑘 =


0 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(78)

In equation (78), 𝑘 ensures that sliding mode control is only active after the desired convergence time, 𝑡 𝑓 and before

which prescribed arbitrary time control (𝑢1) can reject the disturbances. This technique helps the system to converge to

desired attitude and angular velocities even in the presence of external disturbances. Let us define a sliding surface

(𝑠 ∈ R4) as follows

𝑠 = 𝑞𝑤 + 𝐶𝑞𝑒 (79)

where 𝐶 ∈ R4×4 is a gain matrix such that 𝐶𝑖 𝑗 > 0, 𝑖, 𝑗 = 1, 2, 3, 4. The derivative of 𝑠 is given by

¤𝑠 = ¤𝑞𝑤 + 𝐶 ¤̃𝑞𝑒 = ¤𝑞𝑤 + 𝐶𝑞𝑤 (80)

Using Eqs. (76) and (77), Eq. (80) becomes

¤𝑠 = 𝑢1 + 𝑘𝑢𝑆𝑀𝐶 + 𝑇𝑑 + 𝐶𝑞𝑤 (81)

In Eq. (81), the sliding mode control, 𝑢𝑆𝑀𝐶 , is taken as following based on the exponential reaching law.

𝑢𝑆𝑀𝐶 = −𝑘1𝑠 − 𝑘2𝑠𝑖𝑔𝑛(𝑠) − 𝐶𝑞𝑤 (82)

where 𝑘1, 𝑘2 ∈ R4×4 are diagonal and positive definite gain matrices. Consider the following Lyapunov function

𝑉 =
1
2
𝑠𝑇 𝑠 (83)

After differentiating 𝑤𝑟𝑡 time of Eq. (83), using the Eq. (81), Eq. (83) becomes

¤𝑉 = 𝑠𝑇 ¤𝑠

= 𝑠𝑇 (𝑢1 + 𝑘𝑢𝑆𝑀𝐶 + 𝑇𝑑 + 𝐶𝑞𝑤) (84)
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Quantity Initial condition
Quaternion(𝑞(0)) [0.9981, 0.0262,−0.0237, 0.0506]𝑇

Angular velocity(rad/s)(𝜔(0)) [0.2, 0.1,−0.3]𝑇

Table 2 Initial conditions for simulation.

Parameter Value
𝜂𝑖 , (𝑖 = 1, 2, 3...8) 7

𝐽 𝑑𝑖𝑎𝑔{1, 3, 2} 𝐾𝑔.𝑚2

𝑑 (𝑡) [0.001, 0.001, 0.001]𝑇 𝑠𝑖𝑛(4𝜋𝑡) N-m
𝜔𝐷

𝑑
[0.5, 0.5, 0.4]𝑠𝑖𝑛(𝑡) rad/s

𝑘1 𝑑𝑖𝑎𝑔{2, 2, 2}
𝑘2 𝑑𝑖𝑎𝑔{0.001, 0.001, 0.001}
𝐶 𝑑𝑖𝑎𝑔{2, 2, 2}

Table 3 Simulation parameters.

It is already discussed that after 𝑡 = 𝑡 𝑓 ,𝑢1 = 0 and 𝑘 = 1. Using these conditions and control defined by Eq. (82), Eq.

(84) becomes

¤𝑉 = −𝑘1𝑠
𝑇 𝑠 − 𝑘2 |𝑠 | + 𝑠𝑇𝜏𝑑 (85)

If |𝑘2 | ≥ |𝜏𝑑 |, Eq. (85) can be written as

¤𝑉 ≤ −𝑘1 |𝑠𝑇 𝑠 | (86)

Since, ¤𝑉 is negative definite for all 𝑡 ≥ 𝑡 𝑓 , it proves that the sliding mode control input, 𝑢𝑆𝑀𝐶 , is also stabilizing.

Therefore, it can be concluded that the robust control method presented in this section is globally stable and ensures

the convergence of system states in prescribed time. The block diagram representing the overall control architecture

is presented in Fig. (7). Figure (7) depicts the switching control strategy clearly by showing that the prescribed time

control brings the system to equilibrium within time 𝑡 𝑓 and after 𝑡 𝑓 the sliding mode based disturbance rejection is

activated.

VI. Simulation
In this section, the numerical simulation results of the prescribed arbitrary time stabilization and tracking of

spacecraft with and without external disturbances are presented. Initial conditions are provided in Table 1. Parameters

such as inertia matrix, controller parameters, disturbance magnitude and desired angular velocities are provided in Table

2. It should be noted that the initial conditions and all other parameters are kept same throughout the simulations.

1. Attitude stabilization: For attitude stabilization, desired quaternion is 𝑞𝑑 = [1, 0, 0, 0]𝑇 and desired angular
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velocity is 𝜔𝐷
𝑑
= [0, 0, 0]𝑇 . The figure (9) shows the results for stabilization without disturbance. It is observed from

Fig. (9) that the attitude quaternion vector part 𝑞𝑣 = [𝑞1, 𝑞2, 𝑞3]𝑇 ∈ R3 approaches to zero within prescribed settling

time, 𝑡 𝑓 = 5 seconds. Angular velocities also approach to zero within the desired settling time, 𝑡 𝑓 = 5 seconds. The

torque required for this control scheme is maximum at the initial time because the system is at the maximum distance

from equilibrium.

Attitude quaternion approaches to unit quaternion within the limit of desired time 𝑡 𝑓 as shown in Figs. 10(a) and

10(b). The error in angular velocity approaches to zero within the limit of desired time 𝑡 𝑓 which can be seen in Fig.

10(c). Figure 10(d) demonstrate the torque required for stabilizations. The control torque is non-zero after the desired

settling time, 𝑡 𝑓 = 5 seconds because it is continuously rejecting the disturbance, as seen in Fig. 10(d). As a result, the

angular velocity in Fig. 10(c) is non-zero, in the order of 0.001 rad/s.

It can be noticed from the above simulations that there is an abrupt transition at 𝑡 𝑓 = 5 seconds, which indicates that

the time varying control gain (𝜂/𝑡 − 𝑡 𝑓 ) is increasing rapidly in efforts to bring the attitude states to origin as 𝑡 → 𝑡 𝑓 . If

the control availability is high, then this jerky transition can be further reduced by increasing the control gains 𝜂. An

increase in the control gain 𝜂 corresponds to a higher required control torque at 𝑡 = 0.

2. Attitude tracking: For tracking, the desired quaternion is computed by integrating the derivative of the desired

quaternion which is obtained from the desired angular velocity. The desired angular velocity in the body frame is

obtained using the equation 𝜔𝐵
𝑑
= 𝑅(𝑞𝑒)𝑇𝜔𝐷

𝑑
, and ¤𝜔𝐵

𝑑
is obtained using Eq. (11). Figure (11) shows the results for the

attitude tracking without presence of external disturbance. It is observed that after settling time 𝑡 𝑓 = 5 seconds, the

output follows the desired attitude without any visible lag or delay. Similar tracking performance is also seen in Fig.

(12) for the angular velocity tracking. The control torque for tracking is shown in Fig. (13). The maximum control

torque demand occurs the initial time when the system is at its maximum distance from equilibrium.

Now, the simulation results of the spacecraft attitude tracking with the presence of external disturbance are presented.

Attitude quaternion tracks the desired quaternion within the limit of desired time 𝑡 𝑓 as presented in Fig. (14). The

actual angular velocity of spacecraft tracks the desired angular velocity as seen in Fig. (15). The demanded torque

during tracking maneuver is shown in the Fig. (16). The findings from the current simulation show that the actual

convergence time is less than the desired convergence time. If the gains 𝜂𝑖 are reduced any further, the convergence time

begins to grow and approaches 𝑡 𝑓 and vice-versa. It can be seen that in the absence of external disturbance, the highest

torque requirement occurs at the start. When applying this control scheme to actual systems, the torque demand at the

beginning point is a key quantity because if the torque requirement exceeds the actuator limit, the control designer may

have to raise the settling time requirement to reduce the maximum necessary torque.

Additionally, the performance of the presented control algorithm is tested for the inertia matrix, denoted as 𝐽𝑢, with

off-diagonal terms. The diagonal terms of 𝐽𝑢 are increased by 50 percent from that of 𝐽. The disturbance model remains

the same as shown in the Table 1. The off-diagonal inertia matrix for the system is given in the following.
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Fig. 9 Stabilization of spacecraft without disturbance.
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Fig. 12 Angular velocity tracking of spacecraft without disturbance.
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𝐽𝑢 =



1.5 0.5 0.4

0.5 4.5 0.4

0.4 0.4 3


𝑘𝑔.𝑚2

It can be noted that the dynamics propagates using the inertia matrix 𝐽𝑢; whereas, the control law uses the value of

inertia matrix given by 𝐽. This implies that we have uncertain inertia matrix 𝐽 available to us for computing the control

input and the actual inertia matrix is 𝐽𝑢 for the propagating the attitude dynamics. Initial conditions for the quaternion

attitude and angular velocity, control gains and the disturbance magnitude are kept same as provided in Table 1 and

Table 2.

Figure 17(a) shows that the system stabilizes within prescribed time, 𝑡 𝑓 = 5 seconds. However, very small oscillation

of the attitude quaternion around the equilibrium point can be clearly seen. This is due to the presence of sinusoidal

disturbance in the dynamics. Figure 17(c) shows the convergence of the angular rate to zero. Angular velocity also has

small amplitude oscillation around the equilibrium point. Figure 17(d) shows the required torque to keep the system on

equilibrium. Non-zero torque is always acting on the system to reject the disturbance, which enters the system dynamics

both directly via external sources and indirectly via the uncertain inertia matrix.

It is important to mention that the control torque requirement is considerably high in magnitude at the beginning of

simulation and increases as the system initial conditions are farther away from equilibrium. If the system is far from

equilibrium, the control requirement may become excessive when our objective is to converge the system to equilibrium

in a very short period of time. The control designer must strike a balance between the settling time and the maximum

needed control torque, so that the actuators do not saturate. The plot in Fig. (18) shows the control requirement at 𝑡 = 0,

for the attitude stabilization with no disturbance case to demonstrate the effect of 𝑡 𝑓 . Clearly, a very short convergence

time demands a very high control torque and vice-versa.

VII. Conclusion
For the quaternion-based spacecraft attitude control, an algorithm known as "prescribed arbitrary time control" was

presented in this study. The proposed control scheme ensures the prescribed arbitrary time stability and attitude tracking

with good performances for arbitrary initial conditions and system parameters. The control law handled the rejection of

disturbances quite well. It was shown that the control demand for the disturbance rejection rose dramatically, which may

need tuning when implementing this control law to actual systems. It is observed that the control demands at the initial

time is high, which can saturate the actuators. There are analytical results presented for a second order system for how

convergence time affects the maximum control torque that needs to be applied to the system. Future work on this can

include testing of this control algorithm under its input saturation. Experimentation would corroborate the reported
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findings even if the suggested controllers show impressive performance in simulations.
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