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This paper presents simulation results for spin-stabilization and attitude tracking for a
spacecraft simulator. First, a proportional derivative (PD) control is implemented, results
of which are later used for comparison with model predictive control (MPC). MPC problem
is formulated by constraining the control torque and simulator orientation. Control torque
for this system is generated by reaction wheels (RW) and control moment gyroscope (CMG),
thereby, RW motor angular speed and gimbaling servo angles are constrained. Simulation
results demonstrate how a low-cost computational hardware available in the market could be
used for performing control maneuvers on a spacecraft simulator.

I. Introduction

A spacecraft simulator is a free-floating object on top of a very thin layer of air maintained by a spherical air bearing.
It approximates the torque-free environment experienced by a spacecraft. However, the spacecraft operates in 0-g,

but the simulator works in 1-g. By careful design of the simulator, we can almost ensure that center of gravity of the
simulator is at exactly the center of rotation of the simulator. The spacecraft simulators are needed for experimental
validation of the theoretical results obtained for various guidance, navigation, and control (GNC) strategies for different
types of missions in space. The various type of missions in space are formation flying, rendezvous and docking,
berthing, capturing and detumbling of uncooperative targets, assembling space station and large telescopes, on-orbit
servicing, etc. New control principles for future spacecraft must be assessed experimentally, which can be readily done
on these spacecraft simulator platforms. With the rise of commercial and military satellite sectors, quick prototyping
and testing of potential attitude control algorithms is needed. Other necessity for spacecraft simulators is to educate
and train the engineers and scientists who are going to work on execution of space missions [1–3]. Spin-stabilization
is a method to maintain the pointing direction of a spacecraft. During spin- stabilization entire spacecraft rotates
around a fixed axis. Most spacecrafts use spin-stabilization for all or part of their lifetime in space. Many satellites
are spin-stabilized during the orbit transfer maneuvers to reduce the effect of parasite torques generated during the
firing of apogee boost motor to reduce the error in pointing vector of Δ𝑉 and other satellites are spin-stabilized for
their lifetime. Spin-stabilization is advantageous because it is a passive method to maintain the pointing accuracy. Due
to spin-stabilization a satellite can shut down its active GNC system and keep performing the operational tasks on
battery power. This is particularly useful for low resource spacecraft which have limited computational, sensing and
actuation capabilities [4]. Along with spin-stabilization, attitude tracking is also required for various spacecraft missions.
Therefore, to solve the spin-stabilization and attitude tracking problem simultaneously, this paper makes an attempt
to utilize MPC on spacecraft simulator platform. When using model predictive control (MPC), the plant’s present
state is used as the initial state for a finite horizon open-loop optimal control problem. This optimization yields an
optimal control sequence, and the "first control in this sequence" is then applied to the plant as the current control action.
Conventional control relies on a pre-calculated control law, and this is its fundamental difference with conventional
feedback control [5–7]. Spacecraft control when involves RWs as actuators, it is a known fact that RWs tend to saturate
as explained below. External secular disturbance torques, such as passive gravity gradient, aerodynamic and solar
forces, and active control torques from thrusters and magnetorquers, will tend to make the wheels drift toward saturation.
External disturbance torques can only be countered by a careful regulation of the three-axis reaction wheel momentum.
In most cases, an external torque, such as thrusters or magnetorquers, must be supplied to push the wheel speed down
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to practically zero momentum [8]. Since it is always desirable to avoid the saturation of RWs, the MPC problem is
formulated as a constrained input and constrained state optimization problem. It is recognized that MPC can handle
hard constraints very well, therefore, this paper presents the application of MPC algorithm to the 3-DOF dynamics of a
spacecraft simulator and compare it against PD control law.

II. Simulator Platform
The spacecraft simulator bus has a circular disc made of aluminum that is connected to an annular circular section

with connecting rods. The top part of the bus is supported by a hemispherical air bearing. The bottom platform
consists of all the essential components of 4 Variable Speed Control Moment Gyroscopes (VSCMG) attached with a
right-angle separation along the outer rim of the platform. The spin axis of each of the Reaction Wheels (RW) is tilted
30° downward from the horizontal. The corresponding gimbal axes are perpendicular to them with 60° upward from
horizontal. The bottom one also contains the necessary sensors and actuators for RW motoring and gimbal action. The
top platform consists of the IMU sensor and an on-board computer. Fig. 1 describes the overview of the VSCMG based
spacecraft simulator platform. This design is compact as well as it provides a better flexibility for on-board mounting
the spacecraft components. Following that, a summary of the simulator’s major subsystems will be given.

Fig. 1 Schematic of the spacecraft simulator platform with the RWs shown. The body frame axes and the RW
spin axes at 0 gimbal angle is also annotated.

A. Platform and Air bearings
When compressed gas at high pressure is supplied to the air bearing, the 2-stage platform is levitated on a thin layer

of air simulating frictionless movement. The air bearing is capable of ±30° angular displacement in roll and pitch about
body fixed X and Y axes respectively and full rotation in yaw along Z. The placement of components on the platform is
required to be perfectly balanced in order to ensure the rotation center (here, the center of the hemispherical bearing)

2



coincides with the center of gravity of the simulator body. This will ensure that almost zero toque is acting on the
platform due to gravity. Also, by adding counterweights, the location of the center of mass can be adjusted. RW and
CMG assemblies sit on the platform. The CAD model blueprint of the simulator is shown in Fig. 3.

Reaction Wheels constructed of aluminum are utilized. Four BLDC motors provide the power. There is a maximum
RPM of 1200 for the RWs. Four servo motors are used for the gimbaling action of the RWs in order to achieve CMG
mode. It is possible for the servos to provide an angle of rotation up to ±90 degrees with a maximum gimbal rate of 5
rad/s.

Fig. 2 Explicit RW model with spin, transverse and gimbal angle shown.

B. Sensor
Inertial Measurement Unit (IMU) and hall-effect sensors installed on BLDC motors are among the sensors on

board the spacecraft simulator. The sensors that make up the IMU include accelerometers, magnetometers, and
gyroscopes. Magnetometer detects the 3-axis local geomagnetic field whereas an accelerometer measures the 3-axis
linear acceleration and gyroscope measures 3-axis angular rates. The Hall-effect encoder measures magnetic field
variations. The spacecraft simulator’s orientation and angular rate feedback are provided by fusing IMU sensors data.
It is through this encoder data that the BLDC motor angular speed is determined. An analog PID controller is used
to regulate the angular position of the servo motors in this experimental setup since the servos are supplied with
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potentiometer feedback.
The primary structure along with the main sensors and actuators for this spacecraft simulator is described here. As

the main goal for this work is to develop an optimal controller algorithm for 3DOF attitude control for this system, the
furthers details of sensing, estimation, software, and other sub-components design are provided in a different article.

Fig. 3 Blueprint of indigenously built 3 DOF Spacecraft simulator platform.

III. Attitude Kinematics
This section talks about the reference frame that is attached to the simulator parts, how the body’s attitude is shown

in relation to the inertial frame, and how the attitude kinematics work.

A. Reference frames
The body reference frame lies with its X and Y axes as shown in Fig. 1. Z lies perpendicular to it. XYZ forms a

right-handed coordinate system. When there is no servo rotation, the spin axes of the RWs �̂�𝑠 are arranged as shown.
The horizontal component of the spin axes lies at 45° with respect to the body X and Y axes. Corresponding gimbal
axes �̂�𝑔 and transverse axes �̂�𝑡 in right-handed fashion are shown explicitly in Fig. 2. The gimbal axes are actually fixed
with respect to the body frame. The gimbal axes for the 4 servos are written as follows:

𝐺𝑔 = [�̂�𝑔1 , �̂�𝑔2 , �̂�𝑔3 , �̂�𝑔4 ] (1)

And the corresponding spin axis and transverse axis are determined using:

�̂�𝑠𝑖 = 𝑐𝑜𝑠(𝛾𝑖 (𝑡) − 𝛾𝑖0)�̂�𝑠𝑖0 + 𝑠𝑖𝑛(𝛾𝑖 (𝑡) − 𝛾𝑖0)�̂�𝑡𝑖0 (2)
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�̂�𝑡𝑖 = −𝑠𝑖𝑛(𝛾𝑖 (𝑡) − 𝛾𝑖0)�̂�𝑠𝑖0 + 𝑐𝑜𝑠(𝛾𝑖 (𝑡) − 𝛾𝑖0)�̂�𝑡𝑖0 (3)

where 𝛾𝑖0 is the initial angular position of 𝑖𝑡ℎ servo, where i = 1,2,3,4.

B. Attitude representation
The body attitude is represented with respect to the inertial frame using Modified Rodrigues Parameter (MRP)

which is an elegant method in term of attitude parameterization. MRPs (𝜎𝑖) are related to Euler Parameters (𝛽𝑖) by:

𝜎𝑖 =
𝛽

1 + 𝛽0
∀𝑖 = 1, 2, 3 (4)

And it’s related to Principal Rotation Vector (PRV) using:

𝜎 = 𝑡𝑎𝑛( 𝜙
4
)𝜂 (5)

where 𝜂 is the principal rotation direction and 𝜙 is the corresponding rotation angle.
Therefore, it’s clear that MRP hit singularity at principal rotation angles ±3600. But that can be avoided by using

the shadow MRP set defined by:

𝜎𝑖
𝑆 =

−𝛽𝑖
1 − 𝛽0

∀𝑖 = 1, 2, 3 (6)

The MRPs are switched to shadow MRPs at the surface 𝜎𝑇𝜎 = 1; i.e., when the rotation angle is 𝜙 = ±1800, using:

𝜎𝑖
𝑆 =

−𝜎
𝜎2 (7)

Shadow MRPs are singular at 00. Thus, the singularity is not encountered by this switching. Direction Cosine
matrix C is calculated from MRP parameters through:

𝐶 = 𝐼3×3 +
8𝜎×2 − 4(1 − 𝜎2)𝜎×

(1 + 𝜎2)2 (8)

where, 𝑆× is the cross product manipulator, given by:

𝑆× =


0 −𝑆(3) 𝑆(2)
𝑆(3) 0 −𝑆(1)
−𝑆(2) 𝑆(1) 0

 (9)

C. Attitude Kinematics equation
The MRP rates are related to the body angular rates through Attitude Kinematics equation, given by:

¤𝜎 =
1
4
((1 − 𝜎2)𝐼3×3 + 2𝜎× + 2𝜎𝜎𝑇 )𝜔 =

1
4
𝐵(𝜎)𝜔 (10)

It’s advantageous in using this attitude representation as, the kinematics relation remains same for both MRP and
shadow MRP sets.

IV. Simulator Dynamics and Equation of Motion
The dynamics is first represented with respect to one VSCMG and then extended for VSCMGs as described in the

simulator design [9]. The gimbal rate about �̂�𝑔 axis about the body frame is given by:

𝜔𝐺 = ¤𝛾�̂�𝑔 (11)

And the spin rate of the reaction wheel about the spin axis �̂�𝑠 about the Gimbal frame is given by:

𝜔𝑊 = ¤Ω�̂�𝑠 (12)
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The principal moments of Inertia of gimbal axis expressed in Gimbal frame is 𝐺 is 𝐼𝐺 = 𝑑𝑖𝑎𝑔( [𝐼𝐺𝑠
, 𝐼𝐺𝑡

, 𝐼𝐺𝑔
]) and

of the RWs written in wheel frame𝑊 is 𝐼𝑊 = 𝑑𝑖𝑎𝑔( [𝐼𝑊𝑠
, 𝐼𝑊𝑡

, 𝐼𝑊𝑔
]). As the wheel is symmetrical about the spin axis

�̂�𝑠, Wheel inertia in wheel and gimbal frame are the same. The total angular momentum of the spacecraft H with 1
VSCMG about the COM of the body is:

where,

𝐻 = 𝐻𝐵 + 𝐻𝐺 + 𝐻𝑊 (13)

Let, the body angular velocity with respect to the inertial frame 𝜔 is projected onto the gimbal axes system, to get
the following angular rates along spin, transverse and gimbal axis as:

𝜔𝑠 = �̂�
𝑇
𝑠 𝜔 (14)

𝜔𝑡 = �̂�
𝑇
𝑡 𝜔 (15)

𝜔𝑔 = �̂�𝑇𝑔𝜔 (16)

So that,

𝜔𝐺 = 𝜔𝑠 �̂�𝑠 + 𝜔𝑡 �̂�𝑡 + 𝜔𝑔�̂�𝑔 (17)

Now, each of the angular momentum components from Eq. 13 can be written as:

𝐻𝐵 = 𝐼𝑆𝜔 (18)

𝐻𝐺 = 𝐼𝐺𝑠
𝜔𝑠 �̂�𝑠 + 𝐼𝐺𝑡

𝜔𝑡 �̂�𝑡 + 𝐼𝐺𝑔
(𝜔𝑔 + ¤𝛾)�̂�𝑔 (19)

𝐻𝑊 = 𝐼𝑊𝑠
(𝜔𝑠 +Ω)�̂�𝑠 + 𝐼𝑊𝑡

𝜔𝑡 �̂�𝑡 + 𝐼𝑊𝑔
(𝜔𝑔 + ¤𝛾)�̂�𝑔 (20)

Next, Euler dynamical equation of motion,

¤𝐻 = 𝐿 (21)

is applied. 𝐿 is the net external torque acting on the system. The derivatives taken as initial derivatives, which are
converted to body frame using vector transport theorem.

Combining the VSCMG inertia matrix as the sum of RW inertia and gimbal inertia to get 𝐽 = 𝑑𝑖𝑎𝑔( [𝐽𝑠 , 𝐽𝑡 , 𝐽𝑔]) =
𝐼𝑊 + 𝐼𝐺 . And combining that with spacecraft (without VSCMG components) inertia 𝐼𝑆 to get the whole-body inertia
matrix as 𝐼 = 𝐼𝑆 + 𝐽.

Therefore, the complete dynamical equation of motion of the spacecraft simulator with 1 VSCMG is derived as:

𝐼 ¤𝜔 = −𝜔× 𝐼𝜔−(𝐽𝑠 ( ¤Ω+ ¤𝛾𝜔𝑡 )− (𝐽𝑡 −𝐽𝑔) ¤𝛾𝜔𝑡 )�̂�𝑠−(𝐽𝑠 (𝜔𝑠+Ω) ¤𝛾−(𝐽𝑡 +𝐽𝑔)𝜔𝑠 ¤𝛾+𝐽𝑠Ω𝜔𝑔)�̂�𝑡 −(𝐽𝑔 ¥𝛾−𝐽𝑠Ω𝜔𝑡 )�̂�𝑔+𝐿 (22)

Now, this will be extended for 4 VSCMG, where the gimbal axes lie symmetrically across the body. For multiple
VSCMGs, although the spacecraft body only angular momentum rate remains constant, for the wheel and gimbal,they
added up to generate net torque vectorially. The spin, transverse and gimbal axis unit vectors are compacted to 3 × 4
matrices like 1 as:

𝐺𝑠 = [�̂�𝑠1 , �̂�𝑠2 , �̂�𝑠3 , �̂�𝑠4 ] (23)

𝐺𝑡 = [�̂�𝑡1 , �̂�𝑡2 , �̂�𝑡3 , �̂�𝑡4 ] (24)

The total spacecraft inertia is calculated as:

𝐼 = 𝐼𝑠 +
4∑︁
𝑖=1

𝐽𝑠𝑖 �̂�𝑠𝑖 �̂�
𝑇
𝑠𝑖
+ 𝐽𝑡𝑖 �̂�𝑡𝑖 �̂�𝑇𝑡𝑖 + 𝐽𝑔𝑖 �̂�𝑔𝑖 �̂�

𝑇
𝑔𝑖

(25)

And the corresponding torque generating components (compact representation):
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𝜏𝑠 =


...

𝐽𝑠𝑖 ( ¤Ω𝑖 + ¤𝛾𝑖𝜔𝑡𝑖 ) − (𝐽𝑡𝑖 − 𝐽𝑔𝑖 ) ¤𝛾𝑖𝜔𝑡𝑖

...

 (26)

𝜏𝑡 =


...

𝐽𝑠𝑖 (Ω𝑖 + 𝜔𝑠𝑖 ) ¤𝛾𝑖 − (𝐽𝑡𝑖 − 𝐽𝑔𝑖 ) ¤𝛾𝑖𝜔𝑠𝑖 + 𝐽𝑠𝑖Ω𝑖𝜔𝑡𝑖

...

 (27)

𝜏𝑔 =


...

𝐽𝑔𝑖 ¥𝛾𝑖 − 𝐽𝑠𝑖Ω𝜔𝑡𝑖

...

 (28)

Therefore, the net dynamical equation of motion for the spacecraft simulator with 4 VSCMGs is given by:

𝐼 ¤𝜔 = −𝜔× 𝐼𝜔 − 𝐺𝑠𝜏𝑠 − 𝐺𝑡𝜏𝑡 + 𝐺𝑔𝜏𝑔 (29)

The simulator dynamics with VSC,G can easily be converted to only RW mode or only CMG mode by substituting
¤𝛾 = 0, ¥𝛾 = 0 and Ω = 0 respectively.

It’s important to note that, all of the vectors or matrices expressed in whatever frame must to be written in Body
frame for analysis using proper DCM matrix among the two. In the next section, a stable feedback control law is
implemented for the attitude regulation and tracking problem of the spacecraft simulator.

V. Nonlinear Feedback Control
In this section, a globally asymptotically stable feedback control law is implemented using proper Lyapunov function.

The goal of the controller is to track a reference angular velocity 𝜔𝑅. The 𝜎𝑅 (𝑡), ¤𝜔𝑅 are determined accordingly for
the reference frame with respected to the inertial. The body frame representation of reference angular velocity and its
inertial derivative is given by:

𝜔𝑅
𝐵 = [𝐵𝑅]𝜔𝑅

𝑅 (30)

¤𝜔𝑅
𝐵 = [𝐵𝑅] ¤𝜔𝑅

𝑅 − 𝜔× [𝐵𝑅]𝜔𝑅
𝐵 (31)

The error in angular velocity tracking is 𝛿𝜔𝐵 = 𝜔𝐵 − [𝐵𝑅]𝜔𝑅
𝐵. Accordingly, the MRP attitude tracking error 𝜎𝑟

with respect to the reference is determined from attitude kinematic equation as:

¤𝜎𝑟 =
1
4
((1 − 𝜎𝑟 2)𝐼3×3 + 2𝜎𝑟 × + 2𝜎𝑟𝜎𝑟𝑇 )𝛿𝜔 (32)

The feedback control law would target to steer the system, such that the body frame achieves 𝜔𝑟 = 0&𝛿𝜔 = 0.
Hence, a radially unbounded positive definite Lyapunov function is taken as [10]:

𝑉 (𝜎𝑟 , 𝛿𝜔) =
1
2
𝛿𝜔𝑇 𝐼𝛿𝜔 + 2𝐾𝑙𝑛(1 + 𝜎𝑇

𝑟 𝜎𝑟 ) (33)

Therefore, the derivative of the Lyapunov function is calculated with the components taken in the body frame as:

¤𝑉 = 𝛿𝜔𝑇 (𝐼 ¤𝛿𝜔 + 1
2
𝑑𝐼

𝑑𝑥
𝛿𝜔 + 𝐾𝜎𝑟 ) (34)

Global stability of the feedback controller is ensured by setting the derivative in Eq. 34 of the Lyapunov function in
Eq. 33 as ¤𝑉 = −𝛿𝜔𝑇 [𝑃]𝛿𝜔, i.e., a negative semi-definite function. Although, this guarantees, only global stability of the
system, higher order derivatives are calculated to prove negative definiteness and thus global asymptotic stability [10].

Thus, for the suggested Lyapunov derivative, a stability constraint for the control inputs for required control torque
𝐿𝑟 is derived as (∀𝑖 = 1, 2, 3, 4 for 4 VSCMGs):

𝐷0 ¤Ω + 𝐵 ¥𝛾 + 𝐷 ¤𝛾 = 𝐿𝑟 (35)

where,
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𝐷0 =

[
... 𝐽𝑔𝑖 ¥𝛾𝑖 − 𝐽𝑠𝑖Ω𝜔𝑡𝑖 ...

]
(36)

𝐷1 =

[
... 𝐽𝑠𝑖 ((Ω𝑖 + 1

2𝜔𝑠𝑖 )�̂�𝑡𝑖 + 1
2𝜔𝑡𝑖 �̂�𝑠𝑖 ) ...

]
(37)

𝐷2 =

[
... 1

2 𝐽𝑡𝑖 (𝜔𝑡𝑖 �̂�𝑠𝑖 + 𝜔𝑠𝑖 �̂�𝑡𝑖 ) ...

]
(38)

𝐷3 =

[
... 𝐽𝑔𝑖 (𝜔𝑡𝑖 �̂�𝑠𝑖 − 𝜔𝑠𝑖 �̂�𝑡𝑖 ) ...

]
(39)

𝐷4 =

[
... 1

2 (𝐽𝑠𝑖 − 𝐽𝑡𝑖 ) (�̂�𝑠𝑖 �̂�
𝑇
𝑡𝑖
𝜔𝑅 + �̂�𝑡𝑖 �̂�𝑇𝑠𝑖𝜔𝑅) ...

]
(40)

𝐵 =

[
... �̂�𝑔𝑖 𝐽𝑔𝑖 ...

]
(41)

𝐷 = 𝐷1 − 𝐷2 + 𝐷3 + 𝐷4 (42)

And required control torque is:

𝐿𝑟 = 𝐾𝜎𝑟 + 𝑃𝛿𝜔 + 𝐿 − 𝜔× 𝐼𝜔 − 𝐼 ( ¤𝜔𝑅 − 𝜔×𝜔𝑅) −
4∑︁
𝑖=1

𝐽𝑠𝑖 (Ω𝑖𝜔𝑔𝑖 �̂�𝑡𝑖 −Ω𝑖𝜔𝑡𝑖 �̂�𝑔𝑖 ) (43)

It must be noted that the attitude as well as angular velocity of the system can be steered to the reference using 3
different torque generating terms: RW spin acceleration ¤Ω, Gimbal angular rate ¤𝛾 and Gimbal angular acceleration ¥𝛾.
But, for most of the physical systems, 𝐵 is smaller than 𝐷0 and 𝐷, thus 𝐵 ¥𝛾 term can be ignored for torque generation.
Thus, the required control torque 𝐿𝑟 can be produced by ¤Ω and ¤𝛾 by pre-defined torque splitting. In the next section,
simulations are performed for different cases using different torque splitting.

VI. MPC Control and System stability
To apply linear Model Predictive Controller (MPC), the nonlinear system has to be has to be linearized at some

operating point. Then it is being discretized. The State Space model is considered is of order 3 consisting of the angular
velocity errors 𝛿𝜔. There are 8 inputs to the system: the RW spin rates and gimbal rates. Thus the discrete State Space
model is given by:

𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐵𝑘𝑈𝑘 (44)

𝑌𝑘 = 𝐶𝑘𝑋𝑘 (45)

where, the states and the inputs belong to their corresponding admissible set. Now, the MPC problem is defined as:

𝑚𝑖𝑛
𝑥
𝐽𝑀𝑃𝐶 ∋ 𝐸𝑋 < 𝑏 (46)

where,

𝐽𝑀𝑃𝐶 =

[
(𝒀 − 𝒀𝒅)𝑇𝑸𝒚 (𝒀 − 𝒀𝒅)

]
+
[
(𝑼 −𝑼𝒅)𝑇𝑸𝒖 (𝑼 −𝑼𝒅)

]
+[

(𝚫𝑼𝒎)𝑇𝑸𝚫𝒖 (𝚫𝑼𝒎)
]
+ constraint violation terms (47)
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𝑬 =
[

𝑰𝑻3×3 − 𝑰𝑻3×3𝑳
𝑻
− 𝑳𝑻 𝑹𝑻

− 𝑹𝑻
]𝑻

𝒃 =



Δ𝑼(𝑘)max

−Δ𝑼(𝑘)max

𝑼(𝑘)max −𝑼(𝑘 − 1) × ones (𝑚, 1)
𝑼(𝑘 − 1) × ones (𝑚, 1) +𝑼(𝑘)max

𝒀 (𝑘)max

−𝒀 (𝑘)max


where, 𝐽𝑀𝑃𝐶 , 𝑬 and 𝒃 are MPC cost function, constraint violation coefficient and constraint values respectively.

𝑸𝒚 ,𝑸𝒖 and 𝑸𝚫𝒖 are cost weighting matrices for outputs, inputs and input-rates respectively. 𝑇𝑝 and 𝑇𝑚 are taken as
Prediction horizon and Control horizon respectively.

A. Linear MPC stability for time invariant discrete system
In this section, the stability of MPC control for a linear time invariant in discrete time is discussed by choosing a

proper Lyapunov function for the concerned system. Stability using terminal constraints is presented here, although the
constraint is completely compatible with the system. Consider the system given by Eqs. 44 and 45 and model predictive
controller for the plant.

Definition 1: The value of the cost function at time instant 𝑘 is denoted by 𝑁 (𝑿𝑘 ,𝑼𝑘), which is represented by
𝑁 (𝑧𝑘) = 𝑁𝑦 (𝑧𝑘) + 𝑁𝑢 (𝑧𝑘) + 𝑁Δ𝑢 (𝑧𝑘) + 𝑁𝜀 (𝑧𝑘). Then, the value of total cost function is given by 𝑉 (𝑧𝑘), where

V (𝑧𝑘) =
𝑝∑︁
𝑖=1

𝑁 (𝑧𝑘) (48)

Theorem 1: System’s equilibrium point, i.e., 𝑋 = 0 is stable, provided the feasible optimization problem, if it
is subject to the terminal constraint: 𝑿 | (𝑘 + 𝑝 | 𝑘) = 0, where 𝑁 (𝑿𝑘 ,𝑼𝑘) ≥ 0 and 𝑁 (𝑿𝑘 ,𝑼𝑘) = 0 if 𝑿𝑘 = 0 and
𝑼(0) = 0.

Proof: If optimal value of the value function 𝑉 (𝑿,𝑼) and the optimal input is 𝑼𝑘 at time 𝑘 is given by 𝑉∗ and 𝑼∗

respectively. For simplicity, 𝑇𝑝 = 𝑇𝑚 = 𝑝. With this assumption, it is written as:

𝑉∗ (𝑘 + 1) = min
𝑢

𝑝∑︁
𝑖=1

𝑁 (𝑿𝑘+1+𝑖 ,𝑼𝑘+𝑖) (49)

= min
𝑢

{
𝑝∑︁
𝑖=1

𝑁 (𝑿𝑘+𝑖 ,𝑼𝑘−1+𝑖) − 𝑁 (𝑿𝑘+1,𝑼𝑘) + 𝑁 (𝑿𝑘+1+𝑝 ,𝑼𝑘+𝑝)
}

≤ −𝑁 (𝑿𝑘+1,𝑼𝑘) +𝑉𝑘 + min
𝑢
𝑁 (𝑿𝑘+1+𝑝 ,𝑼𝑘+𝑝)

As the optimum 𝑁 (𝑿𝑘+1,𝑼𝑘) is no worse than keeping the optimal solution at time 𝑘 . As the assumed condition
𝑿 (𝑘 + 𝑝 | 𝑘) = 0 is satisfied, then the optimal input 𝑼(𝑘 + 𝑝 | 𝑘) = 0 remains at 0, with 𝑿𝑘 = 0 further. Hence, the
optimization is also satisfied to get a feasible solution. This gives:

min
𝑢
𝑁 (𝑿𝑘+1+𝑝 ,𝑼𝑘+𝑝) = 0 (50)

Now, as 𝑁 (𝑿𝑘+1+𝑝 ,𝑼𝑘+𝑝) ≥ 0, then from Eq. (49), it can be shown that 𝑉∗
𝑘+1 ≤ 𝑉𝑘 . Therefore, it can be concluded

that, 𝑉𝑘 is a Lyapunov function candidate and the system is stable at 𝑿 = 0 and 𝑼 = 0.

VII. Results and Discussion
A globally asymptotically stable feedback controller for attitude tracking problem for this 4 VSCMG based spacecraft

simulator is developed in this work. Accordingly, simulation results are performed considering different reference
angular velocity conditions. Different torque splitting is being used among RW rate and Gimbal rate to generate the
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required feedback control torque. For each case, the variation of angular velocity, relative MRP coordinates, wheel
RPMs and gimbal angles with respect to time are plotted to prove the effectiveness of this method.

For the simulation, maximum wheel RPM is taken as 1200, and maximum servo angle is taken as 90° with max.
gimballing rate 5 rad/s as already stated in Section III. The inertia matrix of the RW is wheel as well as in Gimbal frame
is same and calculated from component specifications datasheet as 𝐼𝑊 = 𝑑𝑖𝑎𝑔( [9.0922𝑒 − 4, 4.8326𝑒 − 4, 4.8326𝑒 −
4])𝑘𝑔.𝑚2 and the same for the gimbal, here the servo motor that rotated using the servo that performs the gimballing
action, is calculated as 𝐼𝐺 = 𝑑𝑖𝑎𝑔( [1.5188𝑒 − 4, 5.7594𝑒 − 4, 5.7594𝑒 − 4])𝑘𝑔.𝑚2. Therefore, the net inertia of the
VSCMG components in their default position becomes [𝐽] = 𝐼𝐺 + 𝐼𝑊 . An estimated and nearly approximate inertia
matrix is calculated from the CAD model of the whole simulator as 𝐼 = 𝑑𝑖𝑎𝑔( [0.01178, 0.01178, 2 ∗ 0.01178])𝑘𝑔.𝑚2.

A. Case A1: Regulation Problem
The regulation problem is simpler than the tracking one. Here, the simulator body is given an initial angular

velocity, where the goal of the controller is to steer it to 𝜎𝑟 = 0 and 𝜔𝑅 = 0. In this simulation, the initial body angular
rates are given as 𝜔(𝑡 = 0) = [(−0.5, 0.1, 0.3)]𝑟𝑎𝑑/𝑠, with having zero RW spin and Gimbal angles. For the control
torque splitting, 60% and 40% is set to be produced using the RW spin angular acceleration and Gimbal angular rate
respectively.

Fig. 4 Attitude regulation control with each simulation aspects plotted as mentioned in VSCMG mode using
nonlinear control.

The regulation problem simulation in MATLAB and the results are presented in Fig. 4. In this simulation, an initial
angular velocity is given to the body. The globally asymptotically stable feedback controller algorithm simultaneously
operates 4 Reaction wheels and 4 Servos, controlling their RPM and angular position respectively, based on the
commanded spin acceleration and gimbal rate. It can be seen from the results that; the body angular rates have reached
the corresponding steady state with an exceedingly small tolerance limit within 4 seconds. Similarly, the relative MRP
error is also tracked to 0. The RW spin rates as well as the servo positions have reached a fixed position and stayed there.
In the due course of the simulation, the RWs are not saturated as well as the Servos haven’t hit their maxima. The net
angular momentum is conserved with the regulation control successfully performed providing a satisfactory transient
and steady-state response.
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B. Case A2a: Tracking Problem in VSCMG mode
In this case, the goal of the controller is to track a commanded reference angular velocity over a period of time. For

this simulation, the initial body angular velocity is kept as 𝜔(𝑡 = 0) = [(0, 0, 0)]𝑟𝑎𝑑/𝑠, and having zero RW spin and
Gimbal angle. The reference angular rates are given as 𝜔𝑅 = [(0.5,−0.4, 0.3)]𝑟𝑎𝑑/𝑠 from 𝑡 = 0 to 40 seconds and
𝜔𝑅 = [(0.3,−0.2, 0.1)]𝑟𝑎𝑑/𝑠 from 𝑡 = 60 to 100, else 𝜔𝑅 = 0. The control torque splitting is kept at 50% each for RW
spin acceleration and Gimbal rate.

Fig. 5 Attitude tracking control with each simulation aspects plotted as mentioned in VSCMG mode using
nonlinear control.

This is the first simulation done in tracking problem and the results are presented in Fig. 5. The angular velocity
tracking results in all 3 axes clearly concludes a satisfactory remark for the controller with perfectly tracking the time
dependent reference signal. The settling time is always within 5 seconds of reference shift. The relative MRP attitude
error perfectly converges to 0, for all of the 4 sections of reference shift in the simulation. This was run in VSCMG mode
with equal control torque splitting. The variation of RW spin rates and Gimbal positions are provided too. The RWs are
not saturated, but the Servos seem to have reached their positive maxima in certain periods of the simulation duration.

C. Case A2b: Tracking Problem in RW mode
The initial condition for body angular rates and VSCMG components as well as the reference angular velocity

commands are kept intact as of the previous case. Whereas, this case is run only in RW mode, keeping gimbal angles
fixed at 0. Thus, the required control torque is totally generated using RW spin acceleration.

Fig. 6 is the second attitude tracking simulation, run exactly with same initial and reference conditions as the
previous. Only, this was run in RW mode, thus the control torque is only generated using RW spin acceleration. For this
case, the body angular velocity perfectly tracks the commanded with satisfactory performance. Accordingly, the attitude
error is also steered to 0. The RW spin haven’t saturated in simulation period with Servos fixed to 0.

The simulation results in Fig. 5 and Fig. 6 in VSCMG and RW mode respectively, points out some important
information. In VSCMG mode, the maximum spin rate reached by the RW wheel is lesser than that of RW alone, which
can be clearly explained that in case of VSCMG, the control torque is generated in distributed manner, thus requiring
lesser spin acceleration. But the system tracking performance is better in case of RW only mode with lesser rising and
settling time. Although, it is compensated by more overshoot in RW only case, compared to VSCMG mode. Another
crucial observation from the simulation results is that, the spin acceleration is quite large in most of the cases, where
precise attitude tracking requires exact following of the commanded RW spin rates and Servo positions. Although in
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Fig. 6 Attitude regulation control with each simulation aspects plotted as mentioned in RW mode using
nonlinear control.

reality, the motors and the servos used have some inherent lag in the system, that can hamper system performance. And
that rapid acceleration in the system, requires much control effort, power usage and causes jerk in the system affecting
spacecraft simulator electronics and other subsystems. Thus, for an optimal system performance of attitude regulation
and tracking, and actuator effort with real hardware simulation, it cannot be achieved using this PD law. Therefore, need
of an optimal controller is necessary.

Hence, the designed MPC controller is implemented in this purpose. The linear MPC controller for the plant,
engineered for this problem is linearized about 𝑿 = 0 (relative angular velocity errors = 0). The prediction and the control
horizon is set at 35 and 2, respectively. The sampling time of the controller is set to 0.01 second. The input and input-rate
constraints were provided as 𝑚𝑎𝑥 : [40𝜋, 40𝜋, 40𝜋, 40𝜋, 5, 5, 5, 5];𝑚𝑖𝑛 : [−40𝜋,−40𝜋,−40𝜋,−40𝜋,−5,−5,−5,−5]
and 𝑚𝑎𝑥 : [2, 2, 2, 2, 2, 2, 2, 2];𝑚𝑖𝑛 : [−2,−2,−2,−2,−2,−2,−2,−2], respectively. Corresponding weights for inputs
and input-rates are given as 7 and 10, respectively. The state bound on outputs are intentionally kept at infinity. The
weights on the output variables are kept 4 for relative angular velocity. Therefore, the proposed MPC controller ready to
test for this attitude control motion in for the following situations.

D. Case B1: Regulation problem
The initial condition for body angular rates and VSCMG components as well as the reference angular velocity

commands are kept intact as of the VII.A. The simulator is intended to stabilize at 0 angular velocity, from an initial
value. Given the constraints, MPC is run for the system.

The regulation simulation results are shown in Fig. 7. The intention of the controller is to stabilize the initially
rotating simulator to 0. The stable MPC controller simultaneously operates 4 Reaction wheel speeds and 4 Servo rates.
The angular velocities plot verified that the body angular rates have reached the corresponding steady state within very
short time. The RW spin rates as well as the servo positions have reached a fixed position and stayed there. Both RW
and Servos haven’t hit the saturation limits. Here, an observation must be noted that the relative MRP is fixed at a non
zero level. This is due to the linearization effect of the nonlinear dynamics. The Servos have also shown no movement
at all. The regulation controller successfully performed providing a satisfactory transient and steady-state response in
terms of relative angular velocity.
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Fig. 7 Attitude regulation control with each simulation aspects plotted as mentioned in VSCMG mode using
MPC control.

E. Case B2: Tracking problem
The initial condition for body angular rates and VSCMG components as well as the reference angular velocity

commands are kept intact as of the VII.B. The simulator is intended to track the commanded reference angular velocities
over time. Given the constraints, MPC is run for the system.

The tracking simulation results are displayed in Fig. 8. The angular velocity tracking results in all 3 axes is clearly
satisfactory with the MPC tracking the time dependent reference signal. The relative MRP attitude error perfectly
converges to 0, when the commanded reference is also 0 in the simulation, not in all 4 sections. This was run in VSCMG
mode. The variation of RW spin rates and Gimbal positions are provided too. For this case too, the Servos are not
moving at all, and the angular velocity control is done using RW only. None of the RW and Servo angle have reached
their limits.

In terms of transient response, the MPC controller certainly has better response than Lyapunov function based
nonlinear controller. MPc has way shorter rise time, lesser overshoot and shorter settling time than the nonlinear
feedback one. The in-between transitions angular velocity as well as the actuation spikes are present in the nonlinear,
which is completely mitigated using MPC, because of its constrained optimization power. These sudden rise in angular
velocities or the actuation could be harmful for the system, which won’t be the case using MPC. Most importantly, the
power consumption. In case of nonlinear feedback control, the RWs and Servos are simultaneously actuated to stabilize
or track the angular velocities with the relative MRPs going to zero. Whereas in case of MPC based controller, as it
uses a linearized model, only angular velocity feedback and stabilization is possible, which is done using RWs. The
magnitude of RW actuation is also slightly lesser than that of nonlinear controller, even if the Servos are not moving.
Hence, during the cases of attitude stabilization, where to tracking or regulating the relative angular velocities are the
primary tasks, MPC is verified to be beneficial in terms of lesser power consumption, as well as having significantly
better transient state response with realistic and safe actuation inputs.

VIII. Conclusion
The control algorithm developed in the paper using MPC, has been successfully able to perform the attitude regulation

and tracking control for the designed 4 VSCMG based 3 DOF spacecraft simulator. From the simulation results, it’s
evident that implementing MPC controller along with state and input constraints has optimal state performance and
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Fig. 8 Attitude tracking control with each simulation aspects plotted as mentioned in VSCMG mode using
MPC control.

energy usage having the input and output rates maintained optimally within its bounds. The experimental validation in
the simulator with the proposed controller will be performed in future work. The particular hardware setup described in
this paper is under development, and the experimental findings will be reported soon.
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