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Spacecraft Attitude Control using NSTSM and
RW Desaturation via Magnetorquer

Vikram Kumar Saini, Dipak Kumar Giri

Abstract—In this paper, the problem of controlling the
orientation of a rigid spacecraft in the presence of paramet-
ric uncertainty and external disturbances is examined. Non-
singular terminal sliding mode (NSTSM) based control has
been derived using the backstepping framework giving the
system finite-time stability with continuous control inputs.
NSTSM can only reject matched disturbances, therefore, the
gains are made adaptive to adjust according to the upper
bound of the external disturbance. Reaction wheels (RWs)
are taken as primary actuators and modeled as first order
system. A new RW desaturation strategy using magnetorquer
has been proposed. The proposed desaturation method saves
significant energy compared to conventional RW desaturation
methods. Finally, the effectiveness of the control algorithm
along with desaturation strategy is demonstrated by numerical
simulations.

I. INTRODUCTION

Spacecraft attitude control is a fundamental problem for
any space mission. Attitude control approach that is robust to
parametric and external disturbances is always desired. One
such approach is sliding mode control. Sliding mode control
has been used extensively for its disturbance rejection and
finite-time convergence properties using fractional power
state feedback [1], [2]. Conventional sliding mode control
suffers from chattering phenomenon caused by switching
function. But, there are ways to handle this problem such as
the use of smooth switching function.
RWs are one of the most preferred type of actuators for
spacecraft attitude control because of its ability to pro-
vide very precise pointing accuracy [3]. RWs suffer from
a fundamental problem of saturation and can no longer
exchange momentum with the spacecraft after saturation [4],
[5]. Once the spacecraft reaches its desired attitude, non-
zero RW angular speed keeps consuming on-board power
[6]. Various desaturation methods consists of the use of cold
gas thrusters, electric propulsion and magnetorquer [4]. The
propulsion based methods are disadvantageous due to the
requirement of gas storage on-board the spacecraft, which
keeps depleting with time, on the other hand, magnetorquer
only need the existence of magnetic field with sufficient
strength and electric power which can be recharged using
solar radiation [7]. For satellites in lower and medium earth
orbit, both the requirements i.e. availability of magnetic field
and solar radiation are fulfilled, therefore, this paper makes
an attempt to solve the problem of attitude stabilization using
RWs and desaturation of RWs using magnetorquer.

This paper presents a control algorithm for a second order
strict feedback system that combines the advantages of back-
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Figure 1. Frames of reference

stepping framework such as globally asymptotic stability in
the sense of Lyapunov and fractional power feedback giving
finite-time convergence and robustness against external and
parametric disturbances. The switching gains in the control
strategy are made adaptive since the upper bound of dis-
turbance terms is generally unknown. The control algorithm
is then applied for the spacecraft attitude dynamics and a
control law is given for the control torque. For desaturation
of RWs, a desaturation strategy is proposed that gives the
minimum required magnetic moment for a given momentum
dumping rate.

II. PRELIMINARIES

The problem of spacecraft in a circular orbit is considered
in this paper. The orbital radius is 8059 km and the orbit
inclination is taken as 30 deg from the equatorial plane. The
attitude stabilization is done wrt. orbital frame which means
the considered spacecraft can be pointed towards a desired
direction on earth or in space. The frames of references that
are used in this paper are shown in Fig. (1) where I is inertial
frame with basis vector [Îx, Îy, Îz]

T , o is the orbital frame
with basis vector [ôx, ôy, ôz]T and b is spacecraft body frame
with basis vector [b̂x, b̂y, b̂z]T .

A. Notation

In this paper, S(x) is defined as follows

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


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III. KINEMATICS AND DYNAMICS

The system considered here is a rigid spacecraft whose at-
titude kinematics is written wrt. orbital frame and dynamics
is written in inertial frame as follows

q̇r =
1

2
qr ⊗ ωr (1)

Jω̇ = S(Jω + hw)ω + Tgg + u+ d (2)

u = Trw + Tm (3)

Trw = −ḣw (4)

Tm = m×B (5)

where qr = [q1r, q2r, q3r, q4r]
T ∈ R4×1 is a unit quaternion

that satisfies qTr qr = 1, ωr ∈ [0, ω1r, ω2r, ω3r]
T ∈ R4×1

is angular velocity quaternion of the spacecraft relative to
orbital frame , ω ∈ R3×1 is angular velocity vector of the
spacecraft in inertial frame, J ∈ R3×3 is the inertia matrix
of the spacecraft, hw ∈ R3×1 is the reaction wheel angular
momentum, u ∈ R3×1 is control torque which is made up
of two components where torque due to reaction wheel is
Trw ∈ R3×1 and torque due to magnetorquer is Tm ∈ R3×1,
m ∈ R3×1 is magnetic dipole moment of 3 orthogonal
torque rods a, B ∈ R3×1 is ambient geomagnetic field in
spacecraft body frame, Tgg ∈ R3×1 is torque due to gravity
gradient and d ∈ R3×1 is the external disturbance torque.
Angular velocity vector ωr wrt. orbital frame is given by
this relation

ωr = ω − ω0 (6)

ω0 = |ω0|ôBz (7)

where |ω0| ∈ R1
>0 is the orbital angular velocity of the

spacecraft on a circular orbit and ôBz is the z-axis of the
orbital frame transformed into the body frame. The gravity
gradient is modeled as following [8]:

Tgg = −3ω2
0S(Jô

B
x )ô

B
x (8)

where ôBx is the x-axis of the orbital frame transformed into
the body frame. The rotation matrix that transforms a vector
from the orbital frame to the body frame is given as follows:

R =

 2(q21 + q22)− 1 2(q2q3 − q1q4) 2(q2q4 − q1q3)
2(q2q3 + q1q4) 2(q21 + q23)− 1 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) 2(q21 + q24)− 1


(9)

RWs are modeled as first order system 1
τs+1 with time

constant τ seconds.

IV. ERROR KINEMATICS

Let qrd = [q1rd , q2rd , q3rd , q4rd ]
T ∈ R4 be the de-

sired quaternion attitude wrt. orbital frame and q−1
rd =

[q1rd ,−q2rd ,−q3rd ,−q4rd ]
T ∈ R4 is the conjugate of qrd,

then the quaternion error, denoted by qre ∈ R4, can be
written as follows [9]

qre = q−1
rd ⊗ qr (10)

And, the error kinematics is derived as

q̇re = q−1
rd ⊗ (q̇r − q̇rd ⊗ qre) (11)

Using Eq. (1) for both qre and qrd, Eq. (11) becomes

˙qre =
1

2
q−1
rd ⊗ (

1

2
qr ⊗ ωr −

1

2
qd ⊗ ωD

rd ⊗ qre)

=
1

2
qre ⊗ (ωr − q−1

re ⊗ ωD
rd ⊗ qre) (12)

Here, ωD
rd ∈ R4 is the desired angular velocity quaternion

of desired reference frame. Let ωB
rd be the desired angular

velocity quaternion of the body-frame, then the transforma-
tion between angular velocities in body-frame and angular
velocity in the desired frame can be made through the
following expression

ωD
rd = qre ⊗ ωB

rd ⊗ q−1
re

As a result, Eq. (12) becomes

˙qre =
1

2
qre ⊗ (ωr − ωB

rd) (13)

By writing Eq. (13) as ωr − ωB
rd = 2q−1

re ⊗ q̇re, we get

ω̇r − ω̇B
rd = 2q̇−1

re ⊗ q̇re + 2q−1
re ⊗ q̈re

= 2(∥ qre ∥2, 0) + 2q−1
re ⊗ q̈re (14)

The vector part of Eq. (14) can be written as

ω̇r − ω̇B
rd = 2Gq̈re (15)

By rearranging Eq. (15), we get

q̈re =
1

2
GT (ω̇r − ω̇B

rd) (16)

where

G =

 −q2 q1 q4 −q3
−q3 −q4 q1 q2
−q4 q3 −q2 q1


re

It is to be noted that for a tracking problem, ω̇B
rd will be

non-zero and it is required to compute correctly in the body-
frame. Let R(qre) be a rotation matrix that transforms a vec-
tor from body-frame to desired frame, ωB

rd = R(qre)
TωD

rd.
or

ω̇B
rd = Ṙ(qre)

TωD
rd +R(qre)

T ω̇D
rd (17)
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V. CONTROL LAW DESIGN

A. Second order strict feedback system

Control law is designed using backstepping framework
for a second order system written in strict feedback form
because the error kinematics given in section 4 can be
converted into strict feedback form. Consider the second
order system given by the following equations

ẋ1 = x2

ẋ2 = u (18)

Here, x1 ∈ R and x2 ∈ R are the states of the second order
system and u ∈ R is the control input. Our goal is to design
a suitable control input u such that x1 goes to its desired
value in finite-time. Let us define an error as follows

e = x1 − x1d (19)

Here, x1d ∈ R is the desired value of x1. After taking the
derivative of Eq. (19) , it yields

ė = ẋ1 − ẋ1d

= x2 − ẋ1d (20)

Now, a radially unbounded quadratic Lyapunov function is
defined as follows

V1 =
1

2
e2 (21)

The derivative of the Lyapunov function yields

V̇1 = eė

= e(x2 − ẋ1d) (22)

x2 will act as a virtual controller for state x1. Desired value
of x2 is taken as follows

x2d = −k1e+ ẋ1d + s (23)

where k1 ∈ R>0, s ∈ R is a sliding surface which is defined
in Eq. (25). Using the value of x2d in place of x2 in Eq.
(22), the value of V̇1 becomes

V̇1 = −k1e
2 + es (24)

The sliding surface s is defined as

s = ė+ β

∫ t

0

ė
p
q dt (25)

where β ∈ R≥0 and 1 < p/q < 2 such that p and q are
odd integers. The dynamics of sliding surface is derived by
differentiating Eq. (25) which is given as follows

ṡ = ë+ βė
p
q

= ẋ2 − ẍ1d + βė
p
q

= u− ẍ1d + βė
p
q (26)

Now, we take a combined Lyapunov function V2 to design
u that will ensure that V̇2 is negative definite

V2 = V1 +
1

2
s2 (27)

After differentiating the Lyapunov function, it yields

V̇2 = V̇1 + sṡ

= −k1e
2 + es+ s(u− ẍ1d + βė

p
q ) (28)

Let’s consider the control law u given as

u = −e+ ẍ1d − βė
p
q − k̂2sign(s) (29)

where k̂2 ∈ R>0 and it is an adaptive gain whose adaptation
rule will be derived later. By substituting the control law u
given in Eq. (29) into Eq. (28), we get

V̇2 = −k1e
2 − k̂2s.sign(s) (30)

Now, we derive the adaptation rule for k̂2. The error between
the true value k2 and its estimated value k̂2 is defined as
follows

k̃2 = k2 − k̂2 (31)

By differentiating Eq. (31), we get

˙̃
k2 = − ˙̂

k2

Since the true value k2 ∈ R>0 is unknown but it is assumed
constant therefore its derivative is zero. Let us define the
third Lyapunov function so that we can determine a stable
adaptation rule for k̂2.

V3 = V2 +
1

2γ
k̃22 (32)

By taking the derivative of the above Eq. (32), we get

V̇3 = V̇2 +
1

γ
k̃2

˙̃
k2

= −k1e
2 − (k2 − k̃2)s.sign(s)−

1

γ
k̃2

˙̂
k2

= −k1e
2 − k2s.sign(s) + k̃2(|s| −

˙̂
k2
γ
) (33)

The following adaptation rule is taken for k̂2

˙̂
k2 = γ|s| (34)

From the Eqs. (33) and (34), we get

V̇3 = −k1e
2 − k2|s| ≤ 0

The overall Lyapunov function V3 is negative definite, there-
fore the system is stable for the designed control law u and
the adaptation rule ˙̂

k2.
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B. Spacecraft attitude control

Rewriting the error kinematics given in Eqs. (13) and (16)
below

q̇re =
1

2
qre ⊗ (ωr − ωB

rd) = qrw

q̇rw = q̈re =
1

2
GT (ω̇r − ω̇B

rd) = u1 (35)

Equation (35) is a second order strict feedback system
expressed more clearly below

q̇re = qrw

q̇rw = u1 (36)

Our goal here is to design the virtual control u1 such
that attitude quaternion and angular velocity approaches to
the desired attitude quaternion and desired angular velocity.
Actual control torque u is related to the virtual control u1

with the following relation

u1 =
1

2
GT

((
J−1(S(Jω + hw)ω + Tgg + u

)
− ω̇B

rd

)
(37)

Since, we have already designed a control law for a second
order system, we need not repeat the derivation here. We
refer to Eq. (29) for writing the u1

u1 = −qre + q̈rd − βq̇
p
q
re − k̂2sign(s) (38)

Here, β ∈ R4×4, k̂2 ∈ R4×4 and q̇
p
q
re =[

q̇
p
q

1re
q̇

p
q

2re
q̇

p
q

3re
q̇

p
q

4re

]T
. The terms have the same

meanings as described previously. Sliding surface s ∈ R4×1

for this system is written as follows

s = q̇re + β

∫ t

0

q̇
p
q
redt (39)

The adaptation rule for k̂2 is given similar as earlier

˙̂
k2 = γ|s| (40)

Here, γ ∈ R4×4
>0 is a diagonal matrix and |s| =[

|s1| |s2| |s3| |s4|
]T

. By using the Eqs. (37) and
(38), we can write the control torque u as follows

u = 2G
(
−qre + q̈rd − βq̇

p
q
re − k̂2sign(s)

)
+ ...

+ ω̇B
rd − S(Jω + hw)ω − Tgg (41)

It should be noted that during implementation of this con-
trol law, sign(.) function is replaced with tanh(.) function
to make the control law continuous with a disadvantage of
larger convergence time.

VI. REACTION WHEEL DESATURATION STRATEGY

Typical desaturation strategy involves slowing RWs down
to acceptable level or even to zero angular speed. The RW
deceleration will generate a torque on spacecraft which will
change the attitude. Since, attitude is required to be stabilized
during RW desaturation process, therefore, magnetorquer
rods are used for generation of external torque to cancel
the RW torque during desaturation process.
In this paper, we propose an energy efficient desaturation
technique. The technique is very straightforward and intu-
itive. Since, the magnetorquer rods can provide torque only
in the plane perpendicular to the local geomagnetic field
shown in the Fig. (2) below. Net angular momentum h of
the RWs at any given time instant can be decomposed into
two orthogonal parts, h∥ and h⊥, where h∥ is the component
of angular momentum in the direction of magnetic field and
h⊥ lies in the plane perpendicular to magnetic field. From
linear algebra the decomposition can be done as following

h∥ = b̂b̂Th (42)

h⊥ = S(b̂)TS(b̂)h (43)

where b̂ = B
∥B∥ is the unit vector of the magnetic field. At

any given time instant, the torque generated by magnetor-
quer can desaturate only the h⊥ component of the angular
momentum. The desaturation rate is given using proportional
control as follows

ḣ = −kh⊥ (44)

where k > 0 determines the rate of momentum dumping.
Since, the ḣ will generate a torque on the spacecraft, an
external torque of equal magnitude and opposite direction
needs to be applied to maintain the attitude. This torque
will come from the magnetorquer.

Tm = −ḣ (45)

The minimum value of magnetic moment magnitude |m| can
given using Tm = m × B = |m||B|sin(θ), where θ is the
angle between m and B.

|m||B|sin(θ) = k|h⊥| (46)

|m| = k|h⊥|
|B|sin(θ)

(47)

For θ = π
2 rad, minimum value of magnetic moment is given

by

|m| = |kS(b̂)TS(b̂)h|
|B|

(48)

Direction of magnetic moment m is given by ĥ⊥ × b̂.
The dipole model of geomagnetic field

B = [Bx, By, Bz]
T is used which is given in orbital

frame as follows:
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Figure 2. Decomposition of RW angular momentum h

Quantity Value(t=0)
Quaternion [0.7779, 0.3185, 0.3107,−0.4437]T

Angular velocity (rad/s) [0.1, 0.2,−0.3]T

k̂2 diag{1, 1, 1, 1}
Table I

INITIAL CONDITIONS

Bx = B0cos(ω0t)sin(i), By = B0cos(i), (49)
Bz = −2B0sin(ω0t)sin(i)

where B0 = 10−5 , i = π
6 rad is the orbit inclination

angle and ω0 = 8.7266 × 10−4 rad/s orbital angular speed
of the spacecraft.

VII. SIMULATION

The simulations are done in two parts. The first part
simulates the attitude control and the second part simulates
the desaturation of RWs using magnetorquer. The magnetor-
quer can be activated based on some static-rule or condition
imposed on RW rpm. The simulation initial conditions and
parameters are given in Table 1 and Table 2.

A. Attitude stabilization using RW

The attitude of the spacecraft is stabilized using RWs as
primary actuators. The goal of attitude stabilization is to
align the spacecraft to the orbital frame and keep at that
attitude. The desired quaternion wrt. orbital frame is set to

Parameters Value
k 10−4

β 10−3

p 5
q 3

J(Kg.m2)

 10 −1 −2
−1 30 −3
−2 −3 20


γ diag{1, 1, 1, 1}

ω0(rad/s) 8.7266× 10−4

τ(s) 0.3
Table II

SIMULATION PARAMETERS
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Figure 3. Attitude stabilization
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Figure 4. Angular velocity stabilization

qd = [1, 0, 0, 0]T . The results are shown from Fig. (3) to Fig.
(8) for attitude stabilization. Fig. (3) shows that the desired
quaternion is reached in almost 30 seconds. This is a large
angle maneuver as the initial attitude quaternion if expressed
in Euler angles corresponds to −50 deg yaw, 50 deg pitch
and 20 deg roll. Initial angular velocity is also high which is
subsequently driven to zero by control torques provided by
RWs as shown in Fig. (4). The angular velocity plotted in
Fig. (4) is expressed wrt. orbital frame. The control torques
for this maneuver are shown in Fig. (5). It can be clearly
seen that the torques are saturated at 1 N-m.
It should be noted that the desaturation of RWs is active,
while attitude stabilization is being executed. There is a
possibility that the desaturation and stabilization goals are
acting counter to one another. This was a deliberate choice to
conduct the simulation while desaturation algorithm is also
active to demonstrate the robustness of the control algorithm.
A much better approach to save energy would have been to
either activate the desaturation procedure after stabilization
goal is achieved or one can think of a dynamic algorithm
that decides either to desaturate the RWs or act towards
stabilization along with RWs based on some criteria such as
RW rpm or while disturbance is acting on the spacecraft.
The magnitude of magnetic moment and the torque due
to magnetorquer that are acting on the spacecraft while
stabilization is being performed are shown in Fig. (7) and
(8) respectively. The magnitude of gravity gradient torque
acting on the spacecraft is on the order of 10−5 N-m and
it again demonstrates the robustness of control algorithm
against external disturbances.

B. RW desaturation using magnetorquer

A decay rule for RW angular momentum component in a
plane perpendicular to the magnetic field is proposed in this
paper. Fig. (9) shows the decaying RW rpm. The simulation
was conducted for 70000 seconds which is equal to 9.72
times of the orbital period. Fig. (10) and (11) shows the
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Figure 5. RW torque during attitude stabilization
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Figure 6. RW RPM

magnetic moment and torque due to magnetorquer. The
decay rate in this simulation is chosen such that it gives prac-
tically realizable values for magnetic moment requirement.
The angular momentum decay rate can be optimized for
minimum total energy consumption during the desaturation
process.

VIII. CONCLUSION

This paper presented the attitude stabilization of a space-
craft using RWs as actuators using NSTM based control al-
gorithm derived using backstepping framework. The attitude
stabilization performance of the control algorithm is found to
be robust against external bounded disturbances. RWs while
performing attitude control maneuver get saturated which are
then desaturated using magnetorquer rods. The desaturation
algorithm proposed in this paper computes the minimum
magnetic moment that can dump the maximum angular
momentum of the RW at any given point in time. However,
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Figure 7. Magnetic moment
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Figure 8. Torque due to magnetorquer
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Figure 9. RW RPM
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Figure 10. Magnetic moment

as the future work the rate at which angular momentum is
dumped can be further optimized for a circular and elliptical
orbit by minimizing the total energy consumption by RWs
and magnetorquer rods.
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