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Abstract: A robust fault-tolerant flight control scheme for aircraft attitude tracking for
longitudinal automatic landing guidance under actuator loss-of-control using a Time-Delayed
PID control law is presented in this work. Since the formulation of controllers involving
time-delay are similar to incremental nonlinear dynamic inversion, these control schemes are
independent of model knowledge and therefore robust to unfavourable variations in the system
parameters. This property of the time-delay controller is used to develop a discrete-time PID
control law that can alleviate the effects of multiple actuator faults during landing phase of a
fixed-wing aircraft.
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1. INTRODUCTION

Fault-Tolerant Flight Control (FTFC) systems are charac-
terised by the ability to endure loss-of-control events, while
demonstrating a desirable flight performance and main-
taining the stability characteristics of the aircraft (Lom-
baerts et al. (2011); Zhang and Jiang (2008)). While active
FTFC systems are characterised by a fault-detection and
diagnosis mechanism and a reconfiguration mechanism for
control action, passive systems are simply designed to be
robust to system faults in general.

Baseline feedback linearization approaches like Incremen-
tal Nonlinear Dynamic Inversion (INDI) (Sieberling et al.
(2010); Acquatella et al. (2012); Simpĺıcio et al. (2013);
Smeur et al. (2016)) and Time-Delay Control (TDC)
(Youcef-Toumi and Wu (1992); Marquez-Martinez and
Moog (2004); Roy et al. (2017a,b)) have been proved to be
robust to component faults due to the robustness in for-
mulation, predominantly for uncertain nonlinear systems
with an aim to reduce dependency on explicit system mod-
eling. While INDI has been extensively used in control of
aerospace vehicles, TDC is a well known approach in robot
control. When realized in second-order controller canonical
form, a relationship between TDC and a discrete-time PID
controller can be derived, which has been useful in imple-
mentation of TDC for a wide range of dynamic systems
(Jung et al. (2011); Reddy (2020a,b)). PID controllers
are well known for the effectiveness in a wide spectrum
of applications, especially when conceived in digital form
(Chang and Jung (2008)). Owing to the equivalence of a
discrete-time PID to TDC, the control gains can very well
be determined by a systematic method so that it retains
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the robustness in performance and simplicity in implemen-
tation, which are the positive attributes of TDC (Chang
and Jung (2008)) that could be demonstrated for sufficient
performance under substantial system uncertainties and
could simplify the gain tuning procedure.

In the context of flight control, the aircraft attitude track-
ing problem can be formulated in such a manner that the
aircraft Euler attitude can be mapped to the aircraft con-
trol surface deflections in second-order controller canonical
form. This framework has been used to develop aircraft
angular rate control system for a fixed-wing aircraft by
establishing an equivalence between INDI and TDC (Ac-
quatella et al. (2017)). With prior attempts in designing
a TDC for fault-tolerant control of longitudinal flight
have been demonstrated in literature (Choi et al. (2010);
Lee et al. (2012)), this has been extended in the present
work in designing a discrete-time PID controller based
on TDC, termed Time-Delayed PID (TD-PID) controller
for the aircraft attitude tracking problem of the Hansa-
3 aircraft. The PID gains are tuned systematically via
INDI controller by defining the desired error dynamics and
effector blending moments, and the controller performance
has been evaluated for guidance during landing phase un-
der loss-of-control due to successive actuator impairments.
The results are compared with INDI Control and taking
NDI control as a benchmark.

This paper is organised as follows. The problem formula-
tion for landing trajectory generation and conversion of the
desired landing trajectory into attitude tracking reference
and actuator fault modeling is discussed in Section 2,
and a theoretical framework for aircraft attitude control
design using TD-PID control law is presented in Section 3.
Results of closed-loop simulation performed on the Hansa-



3 aircraft model is presented and discussed in Section 4.
The conclusions are finally drawn in Section 5.

2. PROBLEM FORMULATION

2.1 Landing Profile and Attitude Reference Generation

In this subsection, the landing profile for the Hansa-3, a
general aviation aircraft used in the Flight Laboratory of
IIT Kanpur for experimentation purposes, is discussed.

Station Touch down

Flare

Glide slope

Fig. 1. Desired Landing Profile.

The aircraft landing profile generally consists of two
phases: the glide phase and the flare phase, as shown in
Fig. 1. The mathematical representation of the landing
trajectory hd is given by

hd =

{
−tan(θa) x+ h0g ; (glide)

h0f e
−t/ς ; (flare)

(1)

where θa is the approach angle, x is the forward distance,
h0g and h0f are the initial glide and flare altitudes and
ς is the time constant the defines the curvature of the
flare phase. For the current work θa = 2.5◦, h0g = 50m,
h0f = 10m and ς = 6 are taken. Now, in order to maintain
a coordinated motion during landing, the desired landing
trajectory is defined in terms of the rate of descent ḣd and
directional motion ẏd as

ḣd = Va sin(γd) (2a)

ẏd = Va cos(θd) sin(ψd) (2b)

While the desired bank angle ϕd is maintained at the trim
condition (Table 4), the desired pitch (θd) and yaw (ψd)
angles for tracking the landing profile are obtained from
(2) as

θd = γd + α (3a)

ψd = sin−1

(
ẏd

Va cos(θd)

)
(3b)

where

γd = sin−1

(
ḣd
Va

)
The automatic landing guidance problem is now simplified
into an attitude tracking problem, the derivation of the
control law for which will be discussed in Section 3.2.

2.2 Actuator Fault Modeling

The actuator model is representative of a first-order trans-
fer function in time-domain format.In this work, a poly-
nomial series is considered for modeling actuator faults as
shown in the below expression (Kim et al. (2003)).

δf = b0 + b1δc (4)

Where b = [b0, b1] is the fault coefficient vector, b0 = δ0,
a disturbance term representing actuator jamming con-
dition, b1 is the control effectiveness parameter. Since
jammed control surfaces induce additional aerodynamic
derivatives, and due to the unavailability of data corre-
sponding to the specific faults, for the present work, only
cases of partial loss of control are simulated for perfor-
mance evaluation of the controller of interest.

Table 1. Actuator Fault Cases

Case b0 b1
no fault 0 1

jammed/total LOC ∈[± position limit] 0
partial LOC 0 ∈ (0, 1)

3. FAULT TOLERANT FLIGHT CONTROL DESIGN

3.1 Flight Vehicle Modeling

The aircraft attitude dynamics can be represented in a
compact form as

Θ̇ = T (Θ) Ω

Ω̇ = J−1
[
−Ω× JΩ+M b

]
(5)

whereΘ = [ϕ, θ, ψ] andΩ = [p, q, r] are the attitude and
the body rates, respectively, and J is the inertia matrix
and M b = [L, M, N ] is the moment vector in body axes.
While the nominal aerodynamic model of Hansa-3 is given
in (Kumar and Ghosh (2018); Peyada and Ghosh (2009)),
the aerodynamic moments can be written in terms of the
corresponding coefficients and can be broken down into
the form

M b = M b
A +M b

C u (6)

where M b
A = [LA, MA, NA] and M b

C = [LC , MC , NC ],
and u = [δa, δe, δr] is the control input vector, and

M b
A = q∞S diag([b c̄ b])

[
Cl(β, p̂, r̂)
Cm(α, q̂)

Cn((β, p̂, r̂)

]
(7a)

is the control independent term and

M b
C = q∞S diag([b c̄ b])

Clδa
0 0

0 Cmδe
0

0 0 Cnδr

 (7b)

is the control dependent term, otherwise termed as the
effector blending moment term, and q∞ = 1

2ρV
2
a is the

dynamic pressure, Va is the airspeed, S is the wing



Fig. 2. Discrete-Time PID Attitude Control Framework for Hansa-3 Aircraft.

reference area, ρ is the atmospheric pressure, α is the angle
of attack and β is the sideslip angle, and

p̂ =
p b

2 Va
, q̂ =

q c̄

2 Va
and r̂ =

r b

2 Va

are the nondimensionalised aircraft body rates, where b is
the wing span and c̄ is the wing mean aerodynamic chord.
For the design of the feedback control law, the following
assumption is made for the aircraft kinematics

Θ̇ ≈ Ω (8)

Based on the above assumptions and substituting (6) in
(5), the aircraft rate dynamics can now be rewritten as

Θ̈ = J−1
[
−Ω× JΩ+M b

A

]
+ J−1M b

C u (9)

which is in second-order controller canonical form and will
be used in the flight control design.

3.2 Discrete-Time PID Based on Time-Delay Control

Following the aircraft attitude dynamics derived in (9), it
can be represented in INDI form as

ÿ = ÿ0 + J−1M̄
b
C0

(u− u0) (10)

where y = [ϕ, θ, ψ] and ÿ0, u0 and M̄
b
C0

are the state
derivative, the input and the control moment matrix at
previous time step, respectively. Rewriting (10) in time-
delayed form as

ÿ(t) = ÿ(t− τ) + B̆
[
u(t)− u(t− τ)

]
(11)

where B̆ ≜ J̄
−1

M̄
b
C , and J̄ and M̄

b
C denote the nominal

values of the inertia matrix and the effector blending
moments, and τ is the sampling time. Now, the discrete-
time formulation of (11) can be written as

ÿ(k) = ÿ(k − 1) + B̆
[
u(k)− u(k − 1)

]
(12)

where t = τk. Now, for the attitude reference commands
yr = [ϕ, θ, ψ]r, denoting the tracking error vector as
e(k) = yr(k) − y(k), the TDC law in discrete-time form
can be written as

u(k) = u(k − 1) + B̆
−1[

− ÿ(k − 1) + ÿr(k)

+KD ė(k) +KP e(k)
] (13)

Based on the causality relationship defined in (Chang and
Jung (2008)), it is necessary to transform ÿd(k), ė(k) and
e(k) to ÿr(k−1), e(k−1) and e(k−1). Now, since ÿr(k−1)
and ÿ(k − 1) emerge at the same sampling instant, (13)
can now be rewritten as

u(k) = u(k − 1) + B̆
−1[

ë(k − 1) +KD ė(k − 1)

+KP e(k − 1)
] (14)

where ë and ė are computed at through numerical differ-
entiation using the following equations:

ė(k) =
e(k)− e(k − 1)

τ

ë(k) =
e(k)− 2e(k − 1) + e(k − 2)

τ2
(15)

Now, considering a standard Proportional-Integral-Derivative
controller in continuous-time as

upid(t) = K̆
[
e(t)+TD ė(t)+T−1

I

∫ t

0

e(σ)dσ
]
+udc (16)

where K̆, TD and T I denote 3 × 3 constant diagonal
matrices representing proportional gain, derivative time
and integral time respectively, and udc is a 3×1 vector rep-
resenting dc-bias governed by initial conditions, where in
the case of aircraft, it refers to the initial trim conditions.
By taking udc = u(k − 1), an equivalence between TDC
and PID can be represented in discrete-time formulation
as

upid(k) =K̆
[
e(k − 1) + TD ė(k − 1)

+ T−1
I

k−1∑
σ=0

τ e(σ)
]
+ u(k − 1)

(17)

The equivalence of the above equation to TDC is therefore
derived by obtaining u(k− 1) for k ≥ 2 and subtracting it
from u(k), which transform (17) to

upid(k)− u(k − 1) =K̆
[
e(k − 1)− e(k − 2)

+ TD (ė(k − 1)− ė(k − 2))

+ T−1
I τ e(k − 1)

] (18)

Further replacing the ė(·) in terms of e(·) by application
of numerical differentiation (15) yields



upid(k) =u(k − 1) + K̆ τ

{(
e(k − 1)− e(k − 2)

τ

)

+TD

(
e(k − 1)− 2e(k − 2) + e(k − 3)

τ2

)

+T−1
I e(k − 1)

}
(19)

Now deriving a relationship between (14) and (19) and
using (15) in (19), the discrete-time PID control law for
aircraft attitude tracking in obtained as

upid(k) = u(k − 1) + K̆ τ
[
TD ë(k − 1)

+ ė(k − 1) +T−1
I e(k − 1)

] (20)

The parameters of the discrete-time PID control law (20)
can be obtained by drawing a comparison with (14) and
obtaining the following relationships:

K̆ = KD (τ B̆)−1, TD = K−1
D and T I = KD K−1

P

While the derivative and integral time are decided by the
choice of KD and KP , the robustness of the discrete-PID
controller can be further enhanced by tuning the propor-
tional gain K̆, which can be considered as a scheduled
gain. By taking a diagonal elements of the nominal effector

blending moment matrix B̆(x) = J̄
−1

M̄
b
C used in INDI

control, the self scheduling properties of B̆(x) are now lost,

so that K̆ can be tuned based on the standard method
used in TDC (Chang and Jung (2008); Acquatella et al.
(2017)) to achieve satisfactory closed loop performance.

4. SIMULATION AND RESULTS

The performance of the Time-Delayed PID controller in
comparison with the INDI controller for automatic land-
ing of Hansa-3 aircraft under actuator loss-of-control is
evaluated numerically and the results presented in this
section. Also, to demonstrate the robustness of the TD-
PID controller, the results are also compared with classical
NDI controller as the benchmark. The aircraft nominal
equations of motion are set up with an actuator model
presented in Table. 2, and a sensor noise model with a stan-
dard deviation of 10−3 in the accelerations, body rates,
airspeed, angle of attack and sideslip measurements, and
the simulation models are built in Simulink® environment.

Table 2. Actuator Specifications.

Actuators Position Limit Rate Limit Bandwidth

δa, δe, δr ±20 deg 100 degs−1 16 rads−1

The simulation is initiated from the trim conditions de-
fined in Table 3, from an initial altitude of h = 50 m. For
fair comparisons, the second-order error model of all the
controllers is defined by the controller gains KDi = 7 and
KPi = 25, i = 1, 2, 3, for the NDI and INDI controllers.
The PID rate and reset times are obtained based on the

Fig. 3. Attitude and Airspeed response under 25% loss-of-
control.

Fig. 4. Control inputs under 25% loss-of-control.



Fig. 5. Landing performance under 25% loss-of-control.

Fig. 6. Attitude and Airspeed response under 50% loss-of-
control.

relationship between INDI and TDC as TDi = 0.143 and

TIi = 0.28. The proportional gain K̆ is tuned analytically
based on the nominal values of the effector blending mo-
ments B̆ of the aircraft, as used in the INDI controller.
A separate control loop for airspeed hold is designed us-
ing a proportional-integral thrust control. The sampling
frequency used in the simulation is fs = 100Hz and
the corresponding sampling time is taken as τ = 0.01s.
For simplicity, the delay time and the sampling time are
considered to be the same.

Actuator loss-of-control is introduced in form of degrada-
tion in control effectiveness in the aileron, the elevator and
the rudder in a successive manner at 10s, 13s and 16s, re-
spectively. Under 25% loss-of-control, the aircraft attitude

Fig. 7. Control inputs under 50% loss-of-control.

Fig. 8. Landing performance under 50% loss-of-control.

Table 3. Initial Trim Conditions

V∞ 40 ms−1 ϕ −0.98◦ p 0.0◦s−1 δa 0.60◦

α 2.58◦ θ 2.58◦ q 0.0◦s−1 δe 1.69◦

β 0.00◦ ψ −0.05◦ r 0.0◦s−1 δa 1.17◦

and airspeed responses and the control input time histories
are presented in Figs. 3 and 4, respectively, and the landing
performance is illustrated in Fig. 5. It can be observed that
the TD-PID exhibits similar robustness characteristics to
the INDI controller, whereas the NDI controller suffers
a performance degradation under actuator loss-of-control.
Figs. 6, 7 and 8 illustrate that the TD-PID is once again
consistent and delivers a performance that is in par with
the INDI in coping up with the loss-of-control condition,
while NDI suffers more performance degradation. The



performance metrics of all the controllers in terms of the
root mean square tracking error is summarised in Table 4.

Table 4. Controller Performance Metrics.

Control
LOC rms(eϕ) rms(eθ) rms(eψ) rms(eh)
[%] [deg] [deg] [deg] [m]

NDI
[25] 0.156 0.333 0.046 6.565
[50] 0.468 0.974 0.143 18.710

INDI
[25] 0.019 0.202 0.006 0.642
[50] 0.029 0.217 0.013 0.827

TD-PID
[25] 0.011 0.278 0.005 0.648
[50] 0.032 0.294 0.015 0.819

In an overall sense, a PID controller designed within a
time-delay framework and gain tuning based on INDI
approach can exhibit better robustness characteristics and
can be regarded as an effective methodology for robust
fault-tolerant flight control.

5. CONCLUSION

A time-delay based PID control scheme was demonstrated
for automatic landing of the Hansa-3 aircraft under suc-
cessive actuator faults. The framework for PID control
design for automatic landing in terms of aircraft attitude
control was established theoretically for the input-output
mapping in second-order controller canonical form. The
PID gains are tuned based on incremental nonlinear dy-
namic inversion. Simulation results suggest that the TD-
PID controller exhibits similar robustness characteristics
to INDI controller under off-nominal flight conditions, thus
making it an effective means to implement fault-tolerant
flight control. The proposed control approach can be ex-
tended to cope up with model uncertainties like structural
damage and multiple actuator impairments combined with
external disturbances during auto-landing phase.
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