
Rendezvous and Docking of Co-Operative
Target with Dual-Axis Gimbaled Electric

Thruster

Ankit M Patel1 ∗ Vikram Kumar Saini2 ∗ Aishashwini3 ∗

Shashi Ranjan Kumar4 ∗∗ Dipak Kumar Giri5 ∗

∗ Department of Aerospace Engineering, Indian Institute of Technology
Kanpur, Uttar Pradesh - 208016, INDIA.

∗∗ Department of Aerospace Engineering, Indian Institute of
Technology Bombay, Maharashtra - 400076, INDIA.

Abstract: This paper presents a simulation study on the feasibility of a dual-axis gimbaled
electric thruster for the relative orbital position control. Relative attitude of the spacecraft
is controlled using reaction wheels (RWs). This study considers proportional derivative (PD)
algorithm for orbital position control and nonlinear dynamic inversion for relative attitude
control. The relative attitude dynamics is derived assuming that the target spacecraft is co-
operative and is inactive, therefore, its relative attitude changes only due to its orbital motion
around the central body. The dual-gimbal dynamics is approximated for control design due to
coupling between gimbal rates. Numerical simulation results are presented for the showing the
efficacy of the control algorithm as well the feasibility of the dual-axis gimbaled thruster for
relative orbital motion control.
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1. INTRODUCTION

Autonomous rendezvous and docking (RVD) operations
for spacecraft are some of the most crucial and challenging
part of current space missions which includes on-orbit
servicing of spacecraft, space structure assembly, transport
vehicle approach and so on (Woffinden and Geller [2007]).
Spacecraft rendezvous and docking refers to a technology
in which two spacecrafts meet at the same position,
velocity and time to unite and form a complex structure.
RVD is performed with an active chaser spacecraft trying
to capture a passive target spacecraft by adjusting its
relative attitude and position towards target (Xie et al.
[2021]). The RVD problem requires effective control
of both relative position and relative attitude of the
spacecrafts through some impulsive orbital maneuvers,
detumbling and attitude corrections.

The actuator configuration selection for attitude and
position control is a crucial problem particularly for
missions that have tight constraints on total mass. For
an RVD mission, the chaser spacecraft is subjected to
significant impulsive forces, these forces may not pass
through centre of gravity which results into significant
rotation or tumbling of the spacecraft. For this reason
high torque generation is also required. A vast amount
of existing literature can be found about the RVD
manoeuvres using impulsive thrust (Prussing [1970]), but
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these impulsive thrusters use liquid propellant, which
undesirably increases the spacecraft mass. Solar-powered
electric thrusters reduce the total propellant mass for
the mission requirement. These electric thrusters provide
continuous low thrust compared to the conventional
impulsive thrusters. Currently, research is being directed
towards the case of rendezvous and docking manoeuvres
of the chaser spacecraft with continuous thrust. Thrust
vectoring is often used in space RVD by gimbaling
the thrust produced by an electric thruster (Ma and
Ghasemi Nejhad [2005]); these thrust vectored manoeuvres
are utilized to maintain the spacecraft trajectory. For
future generation spacecrafts, thrust-vectoring spacecrafts
are ideally suited due to their ability to reduce mass
and volume. However, the low thrust provided by electric
thrusters makes it infeasible to control the spacecraftâs
attitude by thruster vectoring. For attitude control mostly
used actuators include magnetic rods, RWs and Variable
Speed Control Moment Gyroscopes (VSCMGs). This
paper uses the RWs as the primary actuator for attitude
control, and dual-axis gimbaled mechanism is adopted
for the thrust vector control. We assume that the
chaser spacecraft employs a series of separately operated
continuous low-thrust electric actuators for rendezvous
manoeuvring.

This paper aims to implement an autonomous RVD
problem where a target spacecraft is moving in a known
elliptic Keplarian orbit as shown in the Fig. (1). The
chaser spacecraft approaches the target by firing a single
electric thruster, which is considered to be mounted on
a dual-axis gimbal mechanism providing thrust vectoring
control as shown in the Fig. (2). Another set of two
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Fig. 1. Formation flying spacecrafts and their coordinate
reference frame

auxiliary body-fixed cold gas thrusters is added to slow
down the vehicle during the docking phase, since the main
electric thruster is mounted at the back of the spacecraft
as shown in the Fig. (3) and it is not possible to reverse the
thrust due to mechanical constraints. For attitude control,
a set of three RWs along three-body axes is mounted.
The attitude dynamics is over actuated since the thrust
vectoring of main electric thruster also provides net torque
about centre of gravity of the vehicle. Main purpose of
introducing the RWs is to cancel the thrust vectoring
torque so that the thrust can be fired in a desired direction
without affecting the attitude of the vehicle. Relative
orbital motion is modelled for a generic Keplerian orbit
under the influence of spherical gravity field. The relative
distance between the spacecrafts is small as compared
to the target orbit radius rt, where the target orbit can
be eccentric. Furthermore, the relative attitude motion is
modelled by assuming that the target is cooperative and
it’s relative state information is available to chaser in real
time with the help of the on-board sensors. It is supposed
that the only change in target’s attitude is due it’s orbital
motion. For controlling the relative position between the
spacecrafts proportional derivative (PD) based control is
used and for relative attitude control nonlinear dynamic
inversion is used.

2. SPACECRAFT DYNAMICS MODELING

This section presents the modeling of the relative orbital
motion, relative attitude dynamics between the two
spacecrafts, and dual-axis gimbal mechanism motion.

2.1 Dual-Axis Gimbaled Electric Thruster Model

A representation of the gimbaled thruster is shown in Fig.
(2), where the frame Go is attached to outer gimbal, where
p̂1, t̂1 and ĝ1 are the unit vectors of frame Gowith ĝ1 being
outer gimbal axis and γ1 as it’s gimbal angle , whereas
frame Gi corresponds to inner gimbal of the thruster, where
p̂2, t̂2 and ĝ2 are the unit vectors of frame Gi with ĝ2
being inner gimbal axis and γ2 as it’s gimbal angle. The
thrust obtained is always along t̂2 unit vector. The relation
between the units vector can be represented by

Fig. 2. Dual-axis gimbaled Electric thruster[
p̂1
p̂1
ĝ1

]
=
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][
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ŷb
ẑb

]
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[
0 sin γ2 − cos γ2
0 cos γ2 sin γ2
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] p̂1
t̂1
ĝ1

 (2)

Where, x̂b, ŷb and ẑb are the basis vectors of the chaser’s
body frame B, which will be discussed further in subsection
(2.2.1) of this paper. Using the thrust vector t̂2, the thrust
by the electric thruster is obtained by

TET = f t̂2
Where, f is the scaler thrust generated by electric thruster.
Then thruster torque acting on a spacecraft can be
obtained as

τET = fρ× t̂2

τET = f

[
ρ2 sin γ2 − ρ3 cos γ2 cos γ1
ρ3 cos γ2 sin γ1 − ρ1 sin γ2

ρ1 cos γ2 cos γ1 + ρ2 cos γ2 sin γ1

]
(3)

Where, ρ = [ρ1, ρ2, ρ3]
T is the position vector of C i.e.,

center of mass (c.m.) of chaser spacecraft with respect to
frame G as shown in Fig.(3).

2.2 Relative Motion Model

Coordinate reference frames To describe the relative
motion between the formation flying spacecrafts i.e.,
chaser and the target in a general Keplerian orbit, the
following coordinate frames are illustrated in Fig. (1) and
defined as

• N = OXY Z : the right-handed earth centered
inertial frame, where the origin O is fixed at the
center of the Earth , the X̂ and Ẑ basis vectors are
directed towards sun i.e., vernal equinox and north
pole respectively, whereas the Ŷ unit vector is chosen
to complete the triad.

• H = Txyz : A cartesian right-handed frame is called
Hill coordinate frame (Hill [1878]), where the origin
T is fixed at the c.m. of target spacecraft, the x̂ is
directed from the spacecraft radially outwards, while
ẑ is parallel to the target’s orbit momentum vector



in the orbit normal direction.The unit vector ŷ then
completes the triad. This frame is also known as local-
vertical-local-horizontal (LVLH) frame.

• B = Cxbybzb : A cartesian right-handed coordinate
system attached to the chaser’s c.m i.e C and it is
called Body frame of chaser spacecraft.

In the remaining paper, SN denotes the vector S expressed
in the frame N , and Ṡ|N denotes the time derivative of
vector S in the frame N .

Relative Orbital Dynamics and Kinematics Consider
a relative motion of an active chaser spacecraft with
respect to a passive target spacecraft in a general
Keplerian orbit. The Hill (LVLH) frame is used to describe
the relative motion. Thus, the relative position kinematical
equation is given by

Ẋ = V (4)
Where, X = [x, y, z]T , V = [v1, v2, v3]

T are the generalized
relative position and velocity vectors of chaser spacecraft
in H frame.

The relative position dynamics between the chaser and
the target in frame H can be described using the following
equations (Melton [2000], Schaub and Junkins [2014])

ẍ− 2ωtẏ − xω2
t (1 + 2

rt
p
)− yω̇t = ax (5)

ÿ + 2ωtẋ+ xω̇t − yω2
t (1−

rt
p
) = ay (6)

z̈ +
rt
p
ω2
t z = az (7)

Where, ax, ay and az are control accelerations acting on
the chaser spacecraft written in the target’s frame H, ωt

denotes the angular velocity vector of the rotating Hill
frame H relative to the inertial frame N such that ωt = ḟ ẑ
,with f being true anomaly of the target frame, p denotes
parameter of orbit also known as semi-latus rectum. It is
given by p = (1+e cos f)/rt ,with e being eccentricity of the
target’s orbit, the scalar rt > 0 refer to the target’s current
orbit radius, and r = [x, y, z]T represents the relative
position vector of the chaser from the target in H frame
components.

In this paper, a near-range rendezvous scenario is considered.
Thus for obtaining the above Eqs. (5), (6) and (7), an
assumption is considered that the distance between the
chaser and the target is much smaller as compared to the
target’s orbit radius, that is rt >> ∥r∥. Eqs. (5), (6) and
(7) can be reorganized into the general form as shown in
Appendix B.

Relative Rotational Dynamics and Kinematics

Using relative attitude quaternion q =

[
q
q4

]
=

[q1, q2, q3, q4]
T between H and B frame, with the constraint

qT q = 1, the relative attitude kinematical equation is given
by

q̇ =
1

2
q ⊗

[
ω
0

]
=

1

2
S(ω)q (8)
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Fig. 3. Spacecraft model and actuator configuration

where, ω = [ω1, ω2, ω3]
T is the relative angular velocity

of chaser body frame B with respect to Hill coordinate
frame H at target, and S(ω) is skew-symmetric matrix of
ω, which can be defined as

S(ω) =

 0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (9)

The relative angular velocity can also be expressed as

ω = ωc −R(q)ωt (10)

Where, ωc = [ωc1 , ωc2 , ωc3 ]
T is the chaser’s angular

velocity with respect to inertial frame N and expressed in
frame B i.e., ωc = (ωB/N )B and ωt is the target’s angular
velocity with respect to inertial frame N and expressed in
frame H i.e., ωt = (ωH/N )H and R is the rotation matrix
RB

H = R, transforming a vector from target’s body frame
H to chaser’s body frame B, and can be expressed as

R =

 2(q21 + q24)− 1 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 2(q22 + q24)− 1 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) 2(q23 + q24)− 1


(11)

Differentiating Eq.(10) yields

ω̇|N = ω̇c|N −R(q)(ω̇t|N )H (12)

Furthermore using transport theorem Eq.(12) leads to

ω̇|H + ωt × ω = ω̇c|N −R(q)(ω̇t|N )H (13)

Where, all the above entities in Eq. (13) are expressed in
target’s body frame H.

For the chaser spacecraft, the attitude dynamics ω̇c|N is
derived from the conservation of angular momentum h .i.e,

ḣ|N = 0 (14)

Considering all the momentum storage elements of the
active chaser spacecraft, the total angular momentum h
of chaser spacecraft in frame B is expressed as follows

h = hb + hog + hig + hRW



h = Jωc + Iogγ̇1ĝ1 + Iigγ̇2ĝ2 + hRW (15)
Where, hb is angular momentum of chaser spacecraft body,
hog and hig are angular momentum of outer gimbal and
inner gimbal respectively and J ∈ R3×3 is the inertia
matrix of the chaser spacecraft, Iog and Iig are the inertia
of the outer gimbal and inner gimbal along their respective
gimbal axes, hRW is the angular momentum of the reaction
wheels in frame B, that is

hRW = IRWΩ =

[
I1 0 0
0 I2 0
0 0 I3

][
Ω1

Ω2

Ω3

]

The differentiation of Eq. (15) leads to the following
equation

ḣ|B = Jω̇c + Iigγ̇2 ˆ̇g2 + ḣRW (16)

Here, with the assumption that the inertia matrix J is
constant yields J̇ = 0, the effect of the terms γ̈1, γ̈2 are
also assumed to be negligible as justified in (Yoon and
Tsiotras [2006]) and ḣRW is given by

ḣRW = IRW Ω̇ =

[
I1 0 0
0 I2 0
0 0 I3

] Ω̇1

Ω̇2

Ω̇3

 (17)

Putting Eq. (16) in terms of the basis vectors of B frame
using Eq. (1) and (2) yields

ḣ|B = Jω̇c + (−Iigγ̇1γ̇2 sin γ1 + I1Ω̇1)x̂b + ...

+(Iigγ̇1γ̇2 cos γ1 + I2Ω̇2)ŷb + (I3Ω̇3)ẑb
(18)

The coupled non-linear terms of γ̇1γ̇2 are not used in the
control allocation in this paper. The control allocation is
done using Eq. (21). From the transport theorem, the
inertial derivative of Eq. (15) is related to Eq.(18) as
follows

ḣ|N = ḣ|B + ωc × h (19)

Using Eqs. (15), (18) and (19) yields the rotational
dynamics of chaser spacecraft as

Jω̇c = U − ωc × (IRWΩ+ Jωc) + τEP (20)

Where, τET is the electric thruster torque acting about
point C of chaser spacecraft as calculated in Eq. (3) and
U is the control torque given by the following equation
considering Cγ = cos(γ) and Sγ = sin(γ)

U =



−I1 0 0 . . .
−Iogωc2 Iigωc3Sγ1

0 −I2 0 . . .
Iogωc1 −Iigωc3Cγ1

0 0 −I3 . . .
0 Iig(ωc2Cγ1 − ωc1Sγ)



3×5 
Ω̇1

Ω̇2

Ω̇3

γ̇1
γ̇2


(21)

Where, Ω̇1, Ω̇2, Ω̇3,γ̇1 and γ̇2 are the control inputs of
reaction wheels and gimbals. Now using Eq. (13) and (20),
the relative rotational dynamics is derived as follows

ω̇ = J−1(U − ωc × (IRWΩ+ Jωc) + τET ) + ...

−ωt × ω −R(q)ω̇t
(22)

In the above equation few superscript and subscript are
omitted for clarity. Thus, the relative attitude dynamics
has been derived.

3. QUATERNION ERROR DYNAMICS

Let us define a unit error quaternion qe =

[
qe
qe4

]
=

[qe1 , qe2 , qe3 , qe4 ]
T as (Parwana et al. [2018])

q = qd ⊗ qe

qe = qd ⊗ q (23)

where, qd = [qd1 , qd2 , qd3 , qd4 ]
T be the desired relative

attitude quaternion and qd denotes its conjugate i.e.,
qd = [−qd1 ,−qd2 ,−qd3 , qd4 ]

T . Thus, differentiating the
above Eq. (23) , the error kinematics equation is derived
as

q̇e = qd ⊗ (q̇ − q̇d ⊗ qe) (24)

Using Eq. (8) for q and qd , the Eq.(24) leads to

q̇e =
1

2
qe ⊗ (w − qe ⊗wD

d ⊗ qe) (25)

Where, w is the relative angular velocity quaternion

i.e., w =

[
ω
0

]
and wD

d is the desired angular velocity

quaternion in desired quaternion frame D such that wD
d =

qe⊗wH
d ⊗qe where H denotes Hill coordinate frame . As in

this paper a RVD scenario is considered. Thus, the desired
relative attitude quaternion qd = [0, 0, 0, 1]T and constant.
Hence, Eq. (25) yields

q̇e =
1

2
qe ⊗w =

1

2
S(ω)qe (26)

Differentiating Eq. (26) yields the quaternion error dynamics
as follows

q̈e =
1

2
GT ω̇ (27)

Where, the matrix G is defined as

G =

[
qe4 qe3 −qe2 −qe1
−qe3 qe4 qe1 −qe2
qe2 −qe1 qe4 −qe3

]

4. CONTROL LAW DESIGN

4.1 Spacecraft attitude control

In this subsection, we design controller for spacecraft
attitude control based on dynamic inversion. We formulate



the relative attitude control by imposing a second order
error stabilizing dynamics to achieve the desired attitude
i.e., qd = [0, 0, 0, 1]T which is also the equilibrium point for
the error quaternion and corresponds to perfect overlap of
target and chaser frames. The second order error dynamics
can be written as

q̈e + 2ζωnq̇e + ω2
n(qe − qd) = 0 (28)

Where, qe is the unit error quaternion, ζ and ωn are
the design parameters which are generally called damping
ratio and natural frequency respectively. Putting q̈e, q̇e
from Eq. (27) and Eq. (26) the above equation i.e., Eq.
(28) leads to

ω̇ = G(−2ζωn(S(ω)qe)− 2ω2
n(qe − qd)) (29)

Equating Eq. (29) with Eq. (22) gives the control torque
U as follows

U = J(−2G(ζωn(S(ω)qe) + ω2
n(qe − qd)) + ωt × ω + ...

+R(q)ω̇t) + ωc × (IRWΩ+ Jωc)− τET

(30)

Stability Analysis The proof of Lyapunov stabilty for the
control law U is given in Appendix A.

4.2 Spacecraft position control

For the relative position control PD control law is
implemented as follows

T = −k1X − k2Ẋ

Where, a = [ax, ay, az]
T is the control accelerations by

thrusters, X = [x, y, z]T is the relative position vector,
here k1 and k2 are the design parameters of the controller
generally called as proportional and derivative gains. Using
the relative position kinematical equation from Eq. (4) ,
the above equation yields

T = −k1X − k2V (31)
Where, V is the relative velocity vector. From Eq. (B.6)
and (11), T in the Hill frame can be written as T =
R(q)−1TB, using this relation in the Eq. (31) yields

TB = R(q)(−k1X − k2V ) (32)

Where, the thrust TB = [axB , ayB , azB ]
T is allocated among

the electric thruster and auxiliary thruster such that if
ayB < 0 then the Taux = ayB and then corresponding
thrust from electric thruster i.e., f =

√
a2xB

+ a2zB is
allocated. But if ayB > 0 then simply Taux = 0 and
f =

√
a2xB

+ a2yB
+ a2zB . Here for chaser’s position control,

Taux and f are control inputs.

5. NUMERICAL SIMULATION

In this section, we provide numerical simulations for the
formation flying spacecraft i.e., the chaser and target

Parameters Value
Orbit type Keplerian

Semi-major axis (m) 6786000
Eccentricity 0.01

Inclination (deg) 50
Right ascension of the ascending node (deg) 90

Argument of periasis (deg) 93
True anomaly (deg) 203

Table 1. Orbit parameters of the target
spacecraft

Parameter Value
Mchaser 80 (Kg)

J diag{25.416,10,25.416} (Kg.m2)
Iig 0.30 (Kg.m2)
Iog 0.32 (Kg.m2)
IRW diag{0.05,0.05,0.05} (Kg.m2)
ωn 0.133
ζ 0.707
k1 0.1118× 10−4

k2 0.33× 10−2

ρ [0, 0.15, 0]T (m)

Table 2. Simulation parameters

Quantity Initial conditions
Quaternion [0.1826,−0.3651,−0.5477, 0.7303]T

Angular Velocity (rad/s) [0, 0, 0.1]T

Position (m) [1000, 500, 500]T

Velocity (m/s) [0, 0, 0]T

Table 3. Initial conditions for numerical
simulation

spacecraft for an autonomous RVD with parameters as
provided in Table 1. Initial conditions for simulation are
provided in Table 3. Other simulation parameters such as
weight of active spacecraft, inertial matrix and values for
spacecraft, reactions wheels and gimbal are provided in
Table 2.

5.1 Relative Attitude Control

For relative attitude control desired quaternion is qd =
[0, 0, 0, 1]T , in case of a rendezvous and docking problem,
this implies the full attitude synchronization of chaser and
target spacecraft is to be achieved. The results for attitude
synchronization along with its control requirements are
shown in Fig. (4). It is observed that the quaternion
approaches to the desired value in t = 200 seconds. The
attitude control parameters also saturates at about t = 200
seconds.

5.2 Relative Position Control

Desired relative position of target with respect to chaser
is zero. The results for the spacecraft rendezvous and the
thrust requirement are shown in Fig. (5). It is observed
that the position and velocity approaches zero within
t = 2400 seconds and the maximum thrust required from
electric thurster and auxiliary thruster are found out to be
10 N and 5 N respectively.

6. CONCLUSION

This paper presented rendezvous and docking to a target
spacecraft using PD control for relative orbital position
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Fig. 4. Attitude stabilization of chaser spacecraft

control and nonlinear dynamic inversion for relative
attitude control. The commanded thrust force is found
to be higher than feasible limits of existing electric
thruster technology if one individual thruster is used,
but in conjunction with multiple parallel thrusters, it is
possible to achieve the commanded thrust . Commanded
torque is found to be within the achievable limits of
RWs. The attitude control law was formulated with some
approximation on coupling terms of gimbal rates which can
be considered in a future study without approximation.
Optimal allocation of torque among the RWs and electric
thruster generated torque can also be studied as future
work.
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Appendix A. STABILITY ANALYSIS

Considering the stable second order error dynamics
(Slotine et al. [1991]) as given in Eq. (28), assures
our control input to be exponentially stable. For the
global stability of the control input, a Lyapunov stability
analysis is provided with a Lyapunov candidate function
as (Parwana et al. [2018])



V = δqe
Tqe + δ(1− qe4)

2 +
1

2
ωJωT

V = 2δ(1− qe4) +
1

2
ωJωT (A.1)

Where δ > 0 is a constant and qe is vector part of the error
quaternion. Differentiating Eq.(A.1) yields the derivative
of Lyapunov function such as

V̇ = −2δq̇e4 + ωTJω̇

It should be noted that ωTJω̇ = ωJω̇T as both are scalar
and equal. Using Eq.(26), q̇e4 is obtained as q̇e4 = − 1

2qe ·
ω = − 1

2qe
Tω and substituting ω̇ from Eq.(29) yields

V̇ = δqe
Tω − 2ωTJG(ζωnq̇e + ω2

n(qe − qd))

Using the relations qe ⊗ w = GTω and GGT = I. The
above equation can be formulated as

V̇ = δqe
Tω − 2ωTJζωnω − 2ωJGω2

n(qe − qd)

V̇ = δqe
Tω − 2ωTJζωnω − 2ωJω2

nqe (A.2)
where we have used the relation that G(qe − qd) = qe as
Gqe = 03×1. Now, taking δ = 2Jω2

n such that the Eq.(A.2)
formulates to

V̇ = −2ζωnωJω
T (A.3)

Thus, the above expression concludes that V̇ is negative
semi-definite. Using boundness of the input parameters
and differentiating above equation i.e., Eq. (A.3), the
boundedness of V̈ can be easily shown and thus uniform
continuity of V̇ is assured. Hence, the proof that V̇ → 0 as
t → ∞ and global asymptotic stability of ω can be proved
by Barbalat’s lemma (Khalil [1996]), which also implies
that ∥ω̇∥ → 0 as t → ∞ for our mission scenario. Now
considering the dynamic equation from Eq. (29) and Eq.
(26), it can be formulated as

ω̇ = G(−2ζωn(qe ⊗ w)− 2ω2
n(qe − qd))

Using similar steps as in formulation of V̇ the above
expression can be written as

ω̇ = −2ζωnω − ω2
nqe

This can be further rearranged as

∥∥ω2
nqe

∥∥ = ∥−ω̇ − 2ζωnω∥

∥∥ω2
nqe

∥∥ ≤ ∥ω̇∥+ ∥2ζωnω∥

Using the global asymptotic stability of ω, all the terms
at right hand side falls to zero as t → ∞. Thus, ∥qe∥ → 0
which implies that qe4 → ±1. The asymptotic stable
property of qe4 = 1 can be assured by selecting a proper
value of δ (Parwana et al. [2018]). Hence, the system is
therefore global asymptotically stable.

Appendix B. GENERAL FORM FOR RELATIVE
ORBITAL MOTION

LẌ +MẊ +NX = T (B.1)

where, L ∈ R3×3 is the inertia matrix which is symmetric
and positive definite, MẊ represents the Coriolis effect
and centrifugal force, NX represents gravitational force,
and T is the control input vector. These system matrices
for the relative dynamics are given as (Yoon et al. [2014])

L =

[
1 0 0
0 1 0
0 0 1

]
(B.2)

M =

[
0 −2ωt 0
2ωt 0 0
0 0 0

]
(B.3)

N =


−ω2

t (1 + 2
rt
p
) −ω̇t 0

ω̇t −ω2
t (1−

rt
p
) 0

0 0 ω2
t

rt
p

 (B.4)

T = [ax, ay, az]
T (B.5)

As the chaser is an active spacecraft, we have the control
accelerations in the chaser’s body frame B. Hence, let
TB = [axB , ayB , azB ]

T be the control accelerations by the
chaser’s thrusters expressed in the B frame. Its relation
with the control input in H i.e., T and is given as

T = RH
B TB (B.6)

where, RH
B is the rotation matrix, transforms a vector

from frame B to frame H. Thus, substituting the above
equation, Eq. (B.6) in Eq. (B.1) leads to the final
generalized form of the relative position dynamics as
follows

LẌ +MẊ +NX = RB
HTB (B.7)

where, RB
H = (RH

B )−1 and has been evaluated in as Eq.
(11).


